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A B S T R A C T   

The distributed assembly flow shop scheduling (DAFS) problem has received much attention in the last decade, 
and a variety of metaheuristic algorithms have been developed to achieve the high-quality solution. However, 
there are still some limitations. On the one hand, these studies usually ignore the machine deterioration, 
maintenance, transportation as well as the flexibility of flow shops. On the other hand, metaheuristic algorithms 
are prone to fall into local optimality and are unstable in solving complex combinatorial optimization problems. 
Therefore, a multi-population memetic algorithm (MPMA) with Q-learning (MPMA-QL) is developed to address a 
distributed assembly hybrid flow shop scheduling problem with flexible preventive maintenance (DAHFSP-FPM). 
Specifically, a mixed integer linear programming (MILP) model targeted at the minimal makespan is first 
established, followed by an effective flexible maintenance strategy to simplify the model. To efficiently solve the 
model, MPMA is developed and Q-learning is used to achieve an adaptive individual assignment for each sub
population to improve the performance of MPMA. Finally, two state-of-the-art metaheuristics and their Q- 
learning-based improvements are selected as rivals of the developed MPMA and MPMA-QL. A series of numerical 
studies are carried out along with a real-life case of a furniture manufacturing company, to demonstrate that 
MPMA-QL can provide better solutions on the studied DAHFSP-FPM..   

1. Introduction 

In today’s fast-changing market, distributed manufacturing (DM) is 
becoming increasingly popular as a new mode to increase production 
flexibility and tackle the challenges of mass customization (Fu et al., 
2021; Lohmer & Lasch, 2021; Srai et al., 2016). Distributed assembly 
flow-shop scheduling (DAFS) problem, as one of classical and chal
lenging optimization problems under DM, is applicable in many prac
tical manufacturing environments such as pharmaceutical production 
(Zhao, Xu, et al., 2022), furniture industry (Cai, Lei, Wang, & Wang, 
2022). DAFS has also attracted the attention of a wide range of scholars 
in terms of the review paper of Komaki, Sheikh, and Malakooti (2019) as 
well as related works of recent three years. 

A large portion of the research focused on the two-stage DAFS with 
distributed flow-shop fabrication and single-machine assembly and 
presented more and more efficient optimization algorithms. For 
instance, Zhao, Di, et al. (2022) and Zhao, Xu, et al. (2022) respectively 

designed a self-learning hyper-heuristic approach and a population- 
based iterated greedy algorithm to achieve the minimization of the 
total flow time. Zhang et al. (2022) presented a matrix cube-based 
estimation of distribution algorithm to tackle an energy-efficient DAFS 
with the objectives of minimizing the makespan and total carbon 
emission. Li, Pan, et al. (2022) developed a referenced iterated greedy 
algorithm to minimize the total tardiness. Song, Yang, Lin, and Ye 
(2023) proposed an effective hyper heuristic-based memetic algorithm 
to minimize the maximum completion time. 

Some studies have additionally considered assembly processes with 
multiple assembly machines (Framinan, Perez-Gonzalez, & Fernandez- 
Viagas, 2019). For instance, Li et al. (2019) investigated a two-stage 
DAFS with parallel batching and linear deteriorating and developed a 
knowledge-based hybrid artificial bee colony algorithm. Lei, Su, and Li 
(2021) proposed a cooperated teaching–learning-based optimization 
algorithm to deal with a two-stage DAFS targeted at the minimal 
makespan, where each factory is equipped with an assembly machine. 
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Cai et al. (2022) proposed a shuffled frog-leaping algorithm for a three- 
stage distributed assembly hybrid flow shop scheduling (DAHFS) prob
lem, in which each factory has a hybrid flow shop for fabrication, a 
transportation machine for collecting and transferring, and an assembly 
machine for final assembly. 

Despite these DAFS-related initiatives, there is still more research 
that has to be refined. Various DAFS variations can be researched further 
in light of actual scenario demands and past research. On the one hand, 
DAHFS is rarely studied in existing studies. In reality, hybrid flow shop 
scheduling (HFS) and distributed hybrid flow shop scheduling (DHFS) 
problems are very common in real-world applications and have received 
a lot of attention in academia (Neufeld, Schulz, & Buscher, 2022; Shao, 
Shao, & Pi, 2020). Therefore, considering the flexibility of flow shops in 
DAFS is significant and realistic (Cai et al., 2022; Zhao, Zhou, & Liu, 
2021). On the other hand, previous research typically ignored the 
transportation stage that plays an important and essential role between 
the production and assembly stages; thus, there is a need for a more in- 
depth study of the three-stage DAFS. 

Moreover, machine deterioration and failures are inevitable in real- 
life assembly production, yet they are often neglected in DAFS-related 
research. There has been a succession of scholars to integrate appro
priate maintenance activities into the assembly scheduling process in 
other manufacturing scenarios. For example, Zhang and Tang (2021) 
addressed a two-stage assembly flow shop scheduling problem with 
flexible preventive maintenance (PM) and parallel assembly machines, 
in which maintenance levels were defined to evaluate the states of each 
machine. Wang, Lei, et al. (2022) designed a Q-learning-based artificial 
bee colony algorithm for a three-stage distributed assembly scheduling 
problem considering maintenance constraints. Therefore, joint optimi
zation of DAFS and maintenance activities is also a significant variant of 
DAFS. 

As mentioned above, existing related studies have mainly used a 
variety of meta-heuristic algorithms due to the complicated character
istic of DAFS. In terms of optimization methods, further improving the 
solving performance of these meta-heuristics is also a challenging 
problem. The advent of reinforcement learning (RL) has brought new 
possibilities to solve this challenge. In the last three years, RL, especially 
Q-learning, has been gradually applied in many manufacturing sce
narios such as single-machine (Wang, Yan, et al., 2021; Wang, Ren, 
et al., 2022), parallel machines (Guo, Zhuang, Huang, & Qin, 2020; Ruiz 
Rodríguez et al., 2022), flow-shop and its variants (Lee & Kim, 2022; Li, 
Gao, et al., 2022; Yang, Wang, & Xu, 2022), job shop and its variants 
(Du, Li, Li, & Duan, 2022; Li, Gong, et al., 2022; Wang, Sarker, et al., 
2021). However, the application of RL in DAFS-based variants is still 
limited. For this reason, a multi-population memetic algorithm (MPMA) 
with Q-learning (MPMA-QL) is designed for the DAHFS problem with 
flexible PM (DAHFSP-FPM). The main innovations and contributions are 
presented below.  

(1) Both linear deterioration and flexible PM are integrated into the 
DAHFS problem proposed by Cai et al. (2022), which is treated as 
DAHFSP-FPM. A novel mixed integer linear programming (MILP) 
model is provided to formulate the studied DAHFSP-FPM and the 
CPLEX solver (version 22.1) is used to examine the correctness of 
the MILP model.  

(2) To effectively solve the MILP model, position-based PM decisions 
are reduced to an effective PM strategy, and a decoding scheme 
considering deteriorating effects and PM constraints is designed 
to map the three-level encoding to the corresponding makespan.  

(3) In the developed MPMA-QL, the population is divided into seven 
subpopulations that have respective crossover strategies to 
ensure a high population diversity. Besides, Q-learning is 
employed to dynamically adjust the number of individuals for 
each subpopulation to improve the performance of MPMA. 

The rest of the study is organized as follows. In Section 2, DAHFSP- 
FPM is described in detail and its MILP model is established. The 
developed MPMA-QL in Section 3 is used to solve the complex problem 
model, followed by a series of numerical studies in Section 4 to 
demonstrate the performance of the MPMA-QL. In the final section, 
conclusions and potential research topics are presented. 

2. Problem description and model formulation 

The scenario of the studied DAHFSP-FPM is illustrated in Fig. 1, 
which is also described in detail as follows. In the distributed 
manufacturing mode, there are a total of F factories to collaborate in the 
manufacture of P products. These factories are located in different 
geographical locations, but the machine resources configured inside the 
factories are identical. Each product needs to be assembled from certain 
components in one factory. Specifically, the final formation of the 
product passes through three stages, i.e., the production, transportation, 
and final assembly stages of corresponding components. At the pro
duction stage, each component is required to complete its l operations in 
a hybrid flow shop with l stages, in which each flow stage has multiple 
parallel machines for the flexible manufacturing of components. Once 
all the components of a product have been processed, they are sequen
tially moved to the transportation machine and assembly machine for 
the transportation stage and assembly stage, in which there is only one 
transportation machine and one assembly machine in each factory. 

With prolonged use, all machines will experience wear and tear, 
which may result in an increase in normal processing time. Thus, a linear 
deterioration function (Li et al., 2019) is introduced in this study to 
describe the above degradation process, which can reflect the relation
ship between the machine’s age and actual processing time. To improve 
this deterioration effect and to avoid machine breakdowns as much as 
possible, an appropriate maintenance strategy is necessary. In this study, 

Fig. 1. Illustration of the proposed three-stage DAHFSP-FPM.  
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maintenance is an additional service provided by the supplier when the 
machine is sold. From the supplier’s perspective, the more maintenance 
is performed, the more additional revenue can be obtained. For this 
reason, it is assumed that the supplier will accept any maintenance plan 
presented by the manufacturer. In other words, the purpose of this study 
is to assist the manufacturer in determining the optimal production and 
maintenance plans of the DAHFSP-FPM targeted at the minimal make
span. Notations throughout this study are defined in Table 1. 

To ensure the optimality of the proposed DAHFSP-FPM, a mixed 
integer linear programming (MILP) model with position-based mainte
nance decisions (i.e., PM is possible after each operation) is presented 
below. 

min Cmax (1) 

s.t. 

Cmax ≥ E3
g +A3

g∀g (2)  

E3
g ≥ E2

g +A2
g∀g (3)  

E2
g ≥ E1

il +A1
il∀g, i ∈ Ωg, l (4)  

E1
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∑
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m

∑

k
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∑

m′

∑
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X jlf m′k′∀g, i, j ∈ Ωg, l, f (25)  

∑

f

∑

m

∑
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X ilfmk = 1∀i, l (26)  

∑
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∑

i
X ilfmk ≤

∑

i
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Table 1 
Notations throughout the proposed DAHFSP-FPM.  

Notations Descriptions  

Indices 
P Number of products 
N Total number of components for each product 
F Number of factories 
S Number of stages in hybrid flow shop 
M Number of machines at the production stage 
g, h Product index, where g, h ∈ {1, 2,⋯, P}
i, j Component index, where i, j ∈ {1, 2,⋯,N}

f Factory index, where f ∈ {1,2,⋯, F}
l Operation index of components, where l ∈ {1,2,⋯, S}
Ωg Set of components for product g 
m Machine index at the production stage, where m ∈ {1,2,⋯,M}

k Sequential index of operations of the same machine at the production 
stage, where k = 1,2,⋯ 

q Sequential index of products of the same machine at the last two stages, 
where q = 1,2,⋯   

Parameters 
Oil Operation l of component i at the production stage 
P1

il Normal processing time of Oil at the production stage 
P2

g Normal processing time of product g at the transportation stage 

P3
g Normal processing time of product g at the assembly stage 

ε1 Machine deterioration factor at the production stage 
ε2 Machine deterioration factor at the transportation stage 
ε3 Machine deterioration factor at the assembly stage 
t1PM Duration of a PM at the production stage 
t2PM Duration of a PM at the transportation stage 
t3PM Duration of a PM at the assembly stage 
L A large positive number 
T Upper limit of cumulative running time 
α Learning rate 
γ Discount factor 
ε Greedy rate   

Decision variables 
A1

il Actual processing time of Oil 

A2
g Actual processing time of product g at the transportation stage 

A3
g Actual processing time of product g at the assembly stage 

a1
il Machine’s age prior to Oil 

a2
g Machine’s age prior to product g at the transportation stage 

a3
g Machine’s age prior to product g at the assembly stage 

E1
il Earliest start time of Oil 

E2
g Earliest start time of product g at the transportation stage 

E3
g Earliest start time of product g at the assembly stage 

Cmax Maximum completion time of products, i.e., makespan 
ξ1

il 1 if PM is performed prior to Oil and 0 otherwise 
ξ2

g 1 if PM is performed prior to product g at the transportation stage and 
0 otherwise 

ξ3
g 1 if PM is performed prior to product g at the assembly stage and 

0 otherwise 
X ilfmk 1 if Oil is processed at position k on machine m in factory f and 

0 otherwise 
Y gfq 1 if product g is transported at position q in factory f and 0 otherwise 
Z gfq 1 if product g is assembly at position q in factory f and 0 otherwise  
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∑

g
Y gfq ≤ 1∀f , q (29)  

∑

g
Y gfq ≤

∑

g
Y gf ,q− 1∀f , q ≥ 2 (30)  

∑

g
Z gfq ≤ 1∀f , q (31)  

∑

g
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∑

g
Z gf ,q− 1∀f , q ≥ 2 (32)  

∑

q
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∑

m

∑
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X ilfmk∀g, i ∈ Ωg, l, f (33)  

∑

q
Z gfq =

∑

m

∑

k
X ilfmk∀g, i ∈ Ωg, l, f (34)  

where the optimization objective is determined by (1) and (2), i.e., 
minimizing the makespan of the three-stage manufacturing process. 
Constraints (3) and (4) respectively represent the earliest starting time 
of each product at transportation and assembly stages. Constraint (5) 
shows that the earliest starting time of each component must be greater 
than or equal to the completion time of the previous operation of the 
component (if any). Constraints (6), (13) and (19) specify that the 
earliest starting time of each component (or product) must be more than 
or equal to the completion time of the previous component (or product) 
at the same machine (if any), in which if PM is performed immediately 
after the previous component (or product), the maintenance time is 
counted as part of the completion time of the previous component (or 
product). Constraint (7) initializes the earliest starting time at the pro
duction stage. Constraints (8), (14) and (20) ensure the initial machine’s 
age as 0 at all the machines of the three-stage manufacturing process. 

Regarding machine deterioration and maintenance, constraints (9), 
(15) and (21) are used to calculate the actual processing time consid
ering linear deterioration effects at the production, transportation, and 
assembly stages respectively. Constraints (10), (16) and (22) respec
tively reflect the update of the machine’s age under cumulative deteri
orating effects without PM at the production, transportation, and 
assembly stages. Constraints (11), (17) and (23) demonstrate the perfect 
effect of PM activities at the above three stages, i.e., the implementation 
of PM can restore the machine’s age to 0. 

As for the relationship between decision variables, constraints (12), 
(18) and (24) specify that the maintenance decision prior to the first 
operation of any machine must be 0. Constraints (25), (33) and (34) 
guarantee that all components of one product must be assigned to the 

same factory. Constraint (26) represents that each operation can only be 
processed on one machine of one factory. Constraints (27), (29) and (31) 
ensure that each machine at different stages can process at most one 
operation at any time. Constraints (28), (30) and (32) show that there is 
no vacant position before a filled position of the same machine at 
different stages. 

The MILP model has been validated by the CPLEX solver under small- 
scale cases. Due to the NP-hard nature of DAHFSP-FPM, a medium-scale 
case, e.g., six products, each of which consists of two to five components, 
and two factories, each of which has two stages and two to five machines 
per stage in the flow-shop production process, can hardly find an 
optimal solution in two hours. Although the production-maintenance 
joint scheduling plan derived in this way is theoretically optimal, 
finding the optimal solution in such a huge solution space is almost 
impossible using any optimization approach. As a result, we reduce the 
position-based maintenance decision to an efficient maintenance strat
egy, that is, the cumulative running time of the machine cannot exceed a 
predetermined value T. In this way, maintenance activities can be 
determined given a production sequence, avoiding a large number of 
maintenance decisions while ensuring maintenance periodicity. Hence, 
constraints (12), (18) and (24) need to be adjusted to the following 
constraints respectively. Fig. 2 illustrates the sufficient condition for 
maintenance execution with constraint (35) as an example. 

ξ1
jl =

⎧
⎪⎪⎨

⎪⎪⎩

1, if P1
jl + (1 + ε1)

(
a1

il + A1
il

)〉
T

andX ilfm,k− 1 + X jlfmk = 2
0, otherwise

∀i, j, l, f ,m, k ≥ 2 (35)  

ξ2
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P2
h + (1 + ε2)

(
a2

g + A2
g

)〉
T

andY gf ,q− 1 + Y hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (36)  

ξ3
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P3
h + (1 + ε3)

(
a3

g + A3
g

)〉
T

andZ gf ,q− 1 + Z hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (37) 

However, the simplified model considering the above constraints is 
still NP-hard, and the optimal solution can hardly be obtained in prac
tice. To efficiently solve the simplified model, an MPMA and its Q- 
learning-based improvement are developed in the next section to find 
near-optimal solutions. 

Fig. 2. Illustration of the sufficient condition for PM.  
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3. MPMA-QL for DAHFSP-FPM 

The basic idea behind memetic algorithms (MAs) is combining 
evolutionary operators such as crossover and mutation with local search 
to achieve better performance than either approach alone. Different 
designs of evolutionary search and local search strategies correspond to 
different MAs. To enhance the search capability during the solving 
process of DAHFSP-FPM, an improved MA called MPMA-QL is specially 
designed in this study, where the multi-population strategy is applied to 
MA and Q-learning is introduced to adaptively adjust the individual 
quantity among multiple subpopulations. In general, the first three 
subsections introduce the main components of MPMA, followed by the 
Q-learning process, and the overall framework of MPMA-QL is given in 
the last subsection. 

3.1. Encoding and decoding 

In this study, a three-string encoding strategy including factory string 
(FS), product string (PS), and component string (CS) is introduced to 
represent the solution. FS is used to specify the factory to which each 
product is assigned. PS indicates the processing sequence for all products 
during the three-stage manufacturing process. Moreover, CS is used to 
represent the processing sequence for all components of each product. 

Regarding the generation of the three-string encoding, PS and CS are 
completely randomly generated, while some FSs are generated using the 
following Heuristic to ensure the quality of the initial population and 
others are randomly generated to maintain population diversity. The 
pseudo code of the population initialization is given in Algorithm 1, 
where n denotes the population size. 

Heuristic: The total time for each product to be manufactured in three 
consecutive stages without considering deterioration is calculated and 
sorted by the longest processing time first (LPT) rule, and then the sorted 

products are distributed to each factory in turn based on the randomly 
generated factory order. 

An illustration of the three-string encoding with the DAHFSP-FPM in 
Fig. 1 as an example is presented in Fig. 3. It is clear that products 1, 4 
and 6 are assigned to factory 1 in the order of 6–1-4, and the permuta
tion of corresponding components is 21-22-2-3-1-16-13-15-14, while the 
other three products are assigned to factory 2 in the order of 2-3-5, and 
the permutation of corresponding components is 4-6-5-7-9-8-10-12-11- 
17-19-18-20. The three-step decoding process is defined in detail as 
follows. 
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The first step is the decoding of the production phase. The product 
manufacturing sequence and the factory assigned to each product are 
first determined based on PS and FS, and the machine with the earliest 
available time is assigned to each component of each product in turn 
according to the order of component codes of each product at each stage 
of hybrid flow-shop production under the corresponding factory. 
Moreover, the earliest start time of each component must satisfy con
straints (5) and (6) in the MILP model. The second step is the decoding of 
the transportation phase. The earliest start time for each product is 
determined in order of the product code in turn. This depends on the 
maximum completion time for all components of that product, and the 
transportation completion time of the previous product, as shown in 
constraints (4) and (13). Similarly, constraints (3) and (19) are strictly 
satisfied in the decoding of the assembly phase. 

Unlike previous studies such as Cai et al. (2022), the decoding pro
cess of components (or products) requires calculating the actual pro
cessing time and updating the machine’s age based on the linear 
deterioration effect, as well as determining in real time whether the 
accumulated machine operation time exceeds a set threshold. If the 
threshold is exceeded (see Fig. 2), PM is performed to reset machine’s 
age to 0 and the component (or product) is processed immediately af
terwards; otherwise, the component (or product) can be processed 
directly. 

3.2. Population division and exploration search 

The idea of multi-population collaborative optimization is intro
duced to enhance the performance of exploration search in solving 
complex DAHFSP-FPM. The exploration search consists of crossover and 
mutation operations. Regarding crossover operations, we design seven 
crossover strategies based on the characteristics of three-level coding 
and these crossover strategies have their own advantages in different 
scenarios. Compared with a single crossover approach, the solutions 
generated by multiple crossover approaches correspond to different 
solution structures, which can avoid falling into the local optimum 
prematurely. As a consequence, the whole population with n individuals 
is divided into seven subpopulations with respective crossover strate
gies, in which the number of individuals in each subpopulation is rela

tively even and two crossover processes are performed using each 
crossover strategy. The details are presented as follows. 

The first crossover strategy C1 is dedicated to FS, as shown in Fig. 4. 
The first step is the crossover within a subpopulation, as shown in Al
gorithm 2. The best and worst individuals in the current subpopulation s 
are first determined, and one individual Π from the rest of the subpop
ulation is randomly selected as the optimized object. The codes with the 
same position as the worst individual are removed and the blanks are 
filled in order with reference to the coding order of the best individual, 
which is essentially a position-based crossover (PBX). Such an approach 
can guide individuals away from the poor solution and explore better 
neighborhood structures based on the current optimal individual. If the 
new solution after the above crossover is worse than Π, the PBX oper
ation in Cai et al. (2022) is performed for Π and a random individual 
from the current subpopulation s. 

The second step is the crossover between subpopulations, as pre
sented in Algorithm 3. The subpopulation s* with the global best so
lution Πb* is first determined and the worst solution Πw* of 
subpopulation s* is also found. Then, Πb* and Πw* are used to guide the 
update of Π using the crossover strategy in subpopulation s*. If the new 
solution after the above crossover is worse than Π, the PBX operation is 
executed for Π and a random individual from a random subpopulation 
sΔ. Such an approach allows for interaction between subpopulations, 
which can effectively improve the structure of solutions.    

The other six crossover strategies are similar to C1 except that 
crossover operations are performed for different parts of the three-level 
code. C2 is specifically designed for PS. C3 is a separate operation for CS. 
C4-C7 perform multi-level crossover operations for the combinations of 
FS and PS, FS and CS, PS and CS, and FS and PS and CS, respectively. 

After two rounds of crossover processes, two mutation mechanisms 
including NS1 and NS2 proposed by Cai et al. (2022) are randomly 
assigned to each individual, as shown in the following Algorithm 4.  
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3.3. Knowledge-based exploitation search 

Exploration search alone easily falls into local optima, so it is crucial 
to design knowledge-based exploitation search strategies to efficiently 
adjust the neighborhood structure of the solution. To improve the 

computational efficiency of MPMA, this study conducts three 
knowledge-based exploitation searches including LS1, LS2, LS3 for the 
best individual of each subpopulation, as shown in Algorithm 5. 

LS1: Select one product from the factory with longer completion time 
(which is treated as the critical factory) and exchange it with one 
product from other factories. The above procedure is repeated five 
times. If Cmax cannot be improved, the best individual from the five 
experiments is tried to replace the worst individual in the subpopulation. 

LS2: A product is randomly selected from PS and inserted sequen
tially into all possible positions to evaluate fitness values. There are P 
possible neighborhood structures, and thus the fitness is evaluated P 
times. By comparing the fitness values, the optimal insertion position of 
the product is found to ensure a better neighborhood structure. 

LS3: The component codes of each product are adjusted in a similar 
way to LS2. Specifically, one component is selected randomly from each 
product in turn and is inserted into the optimal position of the corre
sponding component code, and thus the total number of fitness assess
ments depends on the total number of components. 

Fig. 3. Illustration of three-string representation.  

Fig. 4. Crossover illustration with FS as an example.  
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3.4. Q-learning process 

In the developed MPMA, there is a lack of adaptive adjustment of the 
number of individuals of each subpopulation. To further achieve effec
tive information exchange between subpopulations and enhance the 
solving performance of MPMA, Q-learning is employed to dynamically 

adjust individual numbers of seven subpopulations instead of random 
adjustment. The procedure of the Q-learning update is given in Algo
rithm 6, in which ωmin, ωmax, C◦ , C*, σ, a, Q, σ′ and a′ are defined in 
Algorithm 7. In addition, the definitions of state, action and reward in 
the Q-learning process are presented below. 

State: System state is evaluated by the difference between the 
maximum value ωmax and minimum value ωmin of the number of in
dividuals in each subpopulation. It can be found that the number of 
states is not fixed. If a new state σ′ is generated during the Q-learning 
process that did not appear before, the state is added to the Q-table Q. 

Action: Action set A is composed of three actions, i.e., increase the 
number of individuals of the subpopulation that generates more new 
solutions; decrease the number of individuals of the subpopulation that 
generates more new solutions; no change in the number of individuals in 
each subpopulation. The well-known ε-greedy strategy is used to select 
an action, as described in lines 8–12 in Algorithm 6. In addition, the 
population size cannot be changed by the selected action. 

Reward: Reward settings depend on the change of the optimal 
objective. A reward of +1 is obtained if the optimal objective becomes 
better and a punishment of − 1 otherwise. 

3.5. Overall description of MPMA-QL 

MPMA-QL is a combination of MPMA and Q-learning algorithm to 
further improve MPMA, and thus the algorithm framework of MPMA-QL 
is based on the developed MPMA in Section 3.1–3.3, integrating the 
proposed Q-learning process in Section 3.4. The detailed steps of MPMA- 
QL are presented below and the flow chart of MPMA-QL is shown in 
Fig. 5.  

(1) Initialize the population with n randomly generated individuals, 
and then evaluate the fitness of each individual. Besides, initialize 
N that consists of the number of individuals for each 
subpopulation.  

(2) Randomly remove some individuals with identical fitness in the 
population, and some new random individuals are added.  

(3) Conduct population division according to Section 3.2.  
(4) Perform internal crossover, external crossover, and local search 

for each individual of each subpopulation based on Section 3.2 
and Section 3.3.  

(5) If the termination condition is not met, all subpopulations are 
combined into a whole population; otherwise, the algorithm is 
terminated.  

(6) If the best solution is not updated for 10 consecutive generations, 
re-initialize N and terminate the Q-learning process (i.e., let ε =

1), and then go to step (2); otherwise, select an action using 
ε-greedy strategy to adjust the individual numbers of 
subpopulations.  

(7) Update the system state, reward, and Q-table, and then go to step 
(2). 

Furthermore, the pseudo code of the developed MPMA-QL is given in 
Algorithm 7, where Ω denotes the maximum number of generations. 
The procedure of MPMA can be obtained by removing lines 3 and 25 
from Algorithm 7 and replacing lines 28 and 29 with a random action 
.  
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Fig. 5. Flow chart of MPMA-QL.  
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The difference between MPMA and MPMA-QL is mainly the Q- 
learning process as presented in Algorithm 6. The complexity of the Q- 
learning process is O(3), since the only operation required is to obtain 
the maximum Q-value or a random one from A of size 3. As a result, the 
complexity overhead of MPMA-QL is only O(3) = O(1) extra computa
tions per generation when compared to MPMA. In fact, MPMA-QL may 
even achieve better results with even less computation time than MPMA, 
as the Q-learning process can assist the meta-heuristic algorithm to 
converge quickly. Experimental evidence for this fact is provided in 
Section 4.5. 

4. Computational experiments 

In this section, a series of computational experiments were con
ducted to evaluate the performance of the developed MPMA and MPMA- 
QL, in which two state-of-the-art meta-heuristics and their Q-learning- 
based improvements were selected as rivals. All algorithms were 
implemented in Python 3.8 and run on an Apple M1 CPU (3.20 GHz/ 
8.00 GB RAM). 

4.1. Test instance settings 

To examine the algorithm performance for solving the proposed 
DAHFSP-FPM, 30 instances (depicted as P× F× S) were randomly 

generated based on the combination of P ∈ {10,15,20,25,30}, F =

{2,4}, S ∈ {2,4,6}, in which P1
il, P

2
g and P3

g were randomly taken integer 
values from the interval [1,100], each product consists of 2 to 5 com
ponents, and each stage of the hybrid flow shop consists of 2 to 5 parallel 
machines. Besides, it is assumed that deterioration rates and mainte
nance durations were known in advance: ε1, ε2 and ε3 were set to 0.1, 
0.05 and 0.15 respectively, and t1PM, t2PM, t3PM were all 10. 

4.2. Performance metric 

The relative percentage deviation (RPD) metric (Mao, Pan, Miao, & 
Gao, 2021) was introduced to measure the performance of MPMA-QL 
and five other competitive algorithms, which is defined as follows: 

RPD =
Calg − Cbest

Cbest
(38)  

where Calg denotes the makespan obtained by a certain optimization 
algorithm on an instance, and Cbest represents the optimal makespan 
among the results obtained by all the competing algorithms on that 
instance. Each algorithm under each test instance was carried out 10 
times independently to achieve consistent and reliable results, reducing 
the variance caused by the randomness. Finally, the average RPD 
(aRPD), the best RPD (bRPD), and the standard deviation of RPD (sRPD) 
were calculated respectively to evaluate the solution quality of the al
gorithm. 

4.3. Key parameter settings of MPMA-QL 

There are five key parameters of MPMA-QL, i.e., population size n, 
upper limit of cumulative running time T and Q-learning-related three 
parameters α, γ and ε. We selected four levels for each parameter to 
analyze the impact of different parameter configurations on the per
formance of MPMA-QL, i.e., n = {40,60,80,100}, T =

{100,120,150,180}, α = {0.1,0.2,0.3, 0.4}, γ = {0.7,0.8,0.9, 1}, ε =

{0.1,0.2, 0.3, 0.4}. There are a total of 45 parameter combinations. We 
picked an orthogonal array with 16 parameter combinations based on 
Taguchi’s approach to lessen the complexity of the parameter analysis, 
where instance 20 × 2 × 6 was chosen as the test instance. To assess the 
sensitivity of the above key parameters, MPMA-QL with each parameter 
combination was run 10 times, and the mean value of the makespan over 
ten independent runs was determined as the response variable (RV), as 
shown in Table 2. Besides, Table 3 shows the significant rank of 
parameter combinations, and then Fig. 6 intuitively shows the factor 
level trend of parameters. 

From Table 3, it is obvious that T is the most significant parameter, 
which reflects that a proper maintenance cycle can greatly improve 
deteriorating effects. n plays the second most important role, which 
means that a proper population size can improve the solution perfor
mance of metaheuristics. Regarding Q-learning-related parameters, ε, α 
and γ play the third, fourth and fifth roles respectively. Based on the RV 
results in Fig. 6, a promising parameter combination is suggested below: 
n = 100, T = 100, α = 0.3, γ = 0.8, ε = 0.2, which will be used in the 
subsequent experiments. 

Table 2 
Orthogonal experiment settings of MPMA-QL.  

Trial number Factor level RV 

n T α γ ε 

1 40 100  0.1 0.7  0.1  1156.55 
2 40 120  0.2 0.8  0.2  1159.45 
3 40 150  0.3 0.9  0.3  1165.75 
4 40 180  0.4 1  0.4  1170.46 
5 60 100  0.2 0.9  0.4  1155.32 
6 60 120  0.1 1  0.3  1160.09 
7 60 150  0.4 0.7  0.2  1159.29 
8 60 180  0.3 0.8  0.1  1170.84 
9 80 100  0.3 1  0.2  1151.59 
10 80 120  0.4 0.9  0.1  1159.04 
11 80 150  0.1 0.8  0.4  1159.28 
12 80 180  0.2 0.7  0.3  1175.28 
13 100 100  0.4 0.8  0.3  1149.14 
14 100 120  0.3 0.7  0.4  1149.37 
15 100 150  0.2 1  0.1  1157.40 
16 100 180  0.1 0.9  0.2  1163.39  

Table 3 
Response and rank of parameters for MPMA-QL.  

Level n T α γ ε 

1 1163.05 1153.15 1159.83 1160.12 1160.96 
2 1161.39 1156.99 1161.86 1159.68 1158.43 
3 1161.30 1160.43 1159.39 1160.88 1162.57 
4 1154.83 1169.99 1159.48 1159.88 1158.61 
Delta 8.22 16.84 2.47 1.20 4.14 
Rank 2 1 4 5 3  

Fig. 6. Factor level trend of MPMA-QL for each key parameter.  

Y. Jia et al.                                                                                                                                                                                                                                       



ExpertSystemsW
ithApplications232(2023)120837

11

Table 4 
Comparative results of six algorithms on aRPD, bRPD,.sRPD  

Instance SFLA QSFLA ABC QABC MPMA MPMA-QL 

aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD 

10 × 2 × 2  0.0122  0.0021  0.0055  0.0112  0.0000  0.0058  0.0085  0.0000  0.0053  0.0099  0.0021  0.0048  0.0037  0.0000  0.0045  0.0019  0.0000  0.0037 
10 × 2 × 4  0.0254  0.0132  0.0066  0.0137  0.0026  0.0066  0.0218  0.0090  0.0070  0.0191  0.0086  0.0075  0.0035  0.0000  0.0038  0.0013  0.0000  0.0027 
10 × 2 × 6  0.0083  0.0000  0.0030  0.0052  0.0000  0.0031  0.0073  0.0016  0.0023  0.0054  0.0000  0.0034  0.0039  0.0000  0.0037  0.0026  0.0000  0.0036 
10 × 4 × 2  0.0156  0.0013  0.0140  0.0160  0.0000  0.0104  0.0020  0.0000  0.0045  0.0056  0.0000  0.0059  0.0009  0.0000  0.0017  0.0009  0.0000  0.0017 
10 × 4 × 4  0.0079  0.0036  0.0036  0.0077  0.0000  0.0058  0.0022  0.0000  0.0033  0.0007  0.0000  0.0015  0.0000  0.0000  0.0000  0.0004  0.0000  0.0011 
10 × 4 × 6  0.0031  0.0000  0.0093  0.0019  0.0000  0.0038  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
15 × 2 × 2  0.0217  0.0117  0.0078  0.0088  0.0000  0.0063  0.0153  0.0049  0.0096  0.0201  0.0033  0.0091  0.0045  0.0000  0.0070  0.0044  0.0000  0.0057 
15 × 2 × 4  0.0166  0.0054  0.0071  0.0083  0.0000  0.0076  0.0184  0.0097  0.0056  0.0140  0.0000  0.0096  0.0048  0.0000  0.0063  0.0034  0.0000  0.0039 
15 × 2 × 6  0.0195  0.0057  0.0103  0.0135  0.0054  0.0037  0.0132  0.0001  0.0079  0.0137  0.0029  0.0054  0.0026  0.0000  0.0039  0.0019  0.0000  0.0022 
15 × 4 × 2  0.0567  0.0196  0.0216  0.0332  0.0033  0.0177  0.0240  0.0063  0.0095  0.0183  0.0055  0.0072  0.0063  0.0000  0.0075  0.0054  0.0000  0.0092 
15 × 4 × 4  0.0243  0.0040  0.0144  0.0171  0.0000  0.0123  0.0136  0.0019  0.0079  0.0110  0.0000  0.0072  0.0050  0.0000  0.0065  0.0044  0.0000  0.0051 
15 × 4 × 6  0.0246  0.0117  0.0080  0.0181  0.0000  0.0127  0.0176  0.0089  0.0067  0.0164  0.0000  0.0073  0.0061  0.0000  0.0073  0.0013  0.0000  0.0021 
20 × 2 × 2  0.0186  0.0084  0.0066  0.0105  0.0000  0.0084  0.0157  0.0000  0.0070  0.0143  0.0000  0.0106  0.0051  0.0000  0.0058  0.0046  0.0000  0.0059 
20 × 2 × 4  0.0211  0.0084  0.0080  0.0153  0.0027  0.0109  0.0248  0.0079  0.0096  0.0179  0.0045  0.0101  0.0024  0.0000  0.0020  0.0012  0.0000  0.0026 
20 × 2 × 6  0.0192  0.0107  0.0083  0.0157  0.0000  0.0111  0.0180  0.0012  0.0087  0.0193  0.0041  0.0100  0.0050  0.0000  0.0055  0.0031  0.0000  0.0052 
20 × 4 × 2  0.0532  0.0228  0.0147  0.0298  0.0141  0.0164  0.0307  0.0090  0.0136  0.0316  0.0237  0.0101  0.0067  0.0000  0.0086  0.0026  0.0000  0.0044 
20 × 4 × 4  0.0374  0.0110  0.0159  0.0251  0.0115  0.0118  0.0291  0.0151  0.0113  0.0229  0.0107  0.0078  0.0088  0.0000  0.0121  0.0068  0.0000  0.0092 
20 × 4 × 6  0.0269  0.0046  0.0146  0.0249  0.0020  0.0119  0.0223  0.0022  0.0095  0.0226  0.0017  0.0107  0.0050  0.0000  0.0070  0.0035  0.0000  0.0048 
25 × 2 × 2  0.0067  0.0022  0.0035  0.0078  0.0004  0.0055  0.0088  0.0043  0.0044  0.0091  0.0006  0.0051  0.0028  0.0000  0.0036  0.0020  0.0000  0.0034 
25 × 2 × 4  0.0132  0.0047  0.0055  0.0089  0.0010  0.0066  0.0136  0.0040  0.0055  0.0153  0.0000  0.0093  0.0060  0.0000  0.0048  0.0017  0.0000  0.0033 
25 × 2 × 6  0.0165  0.0040  0.0076  0.0139  0.0021  0.0074  0.0166  0.0097  0.0053  0.0139  0.0000  0.0101  0.0057  0.0000  0.0053  0.0016  0.0000  0.0032 
25 × 4 × 2  0.0306  0.0107  0.0153  0.0219  0.0034  0.0144  0.0175  0.0043  0.0113  0.0216  0.0081  0.0102  0.0073  0.0000  0.0082  0.0021  0.0000  0.0055 
25 × 4 × 4  0.0356  0.0228  0.0092  0.0217  0.0000  0.0095  0.0206  0.0000  0.0117  0.0245  0.0064  0.0105  0.0087  0.0000  0.0099  0.0020  0.0000  0.0029 
25 × 4 × 6  0.0350  0.0000  0.0146  0.0231  0.0041  0.0113  0.0263  0.0127  0.0112  0.0217  0.0000  0.0124  0.0060  0.0000  0.0077  0.0051  0.0000  0.0085 
30 × 2 × 2  0.0078  0.0026  0.0035  0.0090  0.0032  0.0033  0.0084  0.0000  0.0052  0.0108  0.0038  0.0049  0.0040  0.0000  0.0044  0.0016  0.0000  0.0029 
30 × 2 × 4  0.0155  0.0076  0.0059  0.0155  0.0072  0.0050  0.0190  0.0010  0.0085  0.0164  0.0064  0.0056  0.0072  0.0000  0.0104  0.0026  0.0000  0.0043 
30 × 2 × 6  0.0119  0.0061  0.0071  0.0083  0.0000  0.0065  0.0086  0.0037  0.0027  0.0065  0.0017  0.0038  0.0023  0.0000  0.0025  0.0019  0.0000  0.0030 
30 × 4 × 2  0.0439  0.0163  0.0157  0.0340  0.0086  0.0137  0.0352  0.0226  0.0114  0.0255  0.0064  0.0152  0.0091  0.0000  0.0086  0.0031  0.0000  0.0058 
30 × 4 × 4  0.0316  0.0144  0.0131  0.0277  0.0176  0.0106  0.0266  0.0100  0.0068  0.0250  0.0000  0.0131  0.0054  0.0000  0.0041  0.0014  0.0000  0.0022 
30 × 4 × 6  0.0436  0.0094  0.0173  0.0316  0.0157  0.0105  0.0310  0.0103  0.0099  0.0322  0.0150  0.0074  0.0080  0.0000  0.0096  0.0075  0.0000  0.0087 
Average  0.0235  0.0082  0.0099  0.0166  0.0035  0.0090  0.0172  0.0053  0.0074  0.0162  0.0039  0.0079  0.0049  0.0000  0.0057  0.0027  0.0000  0.0042  
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Table 5 
Comparative results of six algorithms for all the instances grouped by P, F and S.  

Groups of instances P F S 

10 15 20 25 30 2 4 2 4 6 

SFLA aRPD 0.0121 0.0272 0.0294 0.0229 0.0257 0.0156 0.0313 0.0267 0.0229 0.0209 
bRPD 0.0034 0.0097 0.0110 0.0074 0.0094 0.0062 0.0101 0.0098 0.0095 0.0052 
sRPD 0.0070 0.0115 0.0114 0.0093 0.0104 0.0064 0.0134 0.0108 0.0089 0.0100 

QSFLA aRPD 0.0093 0.0165 0.0202 0.0162 0.0210 0.0110 0.0223 0.0182 0.0161 0.0156 
bRPD 0.0004 0.0015 0.0051 0.0018 0.0087 0.0016 0.0054 0.0033 0.0043 0.0029 
sRPD 0.0059 0.0101 0.0118 0.0091 0.0083 0.0065 0.0115 0.0102 0.0087 0.0082 

ABC aRPD 0.0070 0.0170 0.0234 0.0172 0.0215 0.0145 0.0199 0.0166 0.0190 0.0161 
bRPD 0.0018 0.0053 0.0059 0.0058 0.0079 0.0038 0.0069 0.0051 0.0059 0.0050 
sRPD 0.0037 0.0079 0.0100 0.0082 0.0074 0.0063 0.0086 0.0082 0.0077 0.0064 

QABC aRPD 0.0068 0.0156 0.0214 0.0177 0.0194 0.0137 0.0186 0.0167 0.0167 0.0152 
bRPD 0.0018 0.0020 0.0075 0.0025 0.0056 0.0025 0.0052 0.0054 0.0037 0.0025 
sRPD 0.0039 0.0076 0.0099 0.0096 0.0083 0.0073 0.0084 0.0083 0.0082 0.0071 

MPMA aRPD 0.0020 0.0049 0.0055 0.0061 0.0060 0.0042 0.0056 0.0050 0.0052 0.0045 
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
sRPD 0.0023 0.0064 0.0068 0.0066 0.0066 0.0049 0.0066 0.0060 0.0060 0.0053 

MPMA-QL aRPD 0.0012 0.0035 0.0036 0.0024 0.0030 0.0024 0.0031 0.0029 0.0025 0.0029 
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
sRPD 0.0021 0.0047 0.0054 0.0045 0.0045 0.0037 0.0047 0.0048 0.0037 0.0041  

Fig. 7. Mean plots of different groups on the test instances regarding aRPD, bRPD, sRPD.  
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4.4. Algorithm comparison and analysis for DAHFSP-FPM 

Four state-of-the-art optimization algorithms were selected as com
petitors of MPMA and MPMA-QL, which are shuffled frog-leaping al
gorithm (SFLA) and SFLA with Q-learning (QSFLA) (Cai et al., 2022), as 
well as artificial bee colony algorithm (ABC) and ABC with Q-learning 
(QABC) (Wang, Lei, et al., 2022). Due to the variability of the research 

questions, some adjustments to comparison algorithms were required. 
Besides, key parameters of algorithm rivals were re-analyzed to adapt 
the proposed DAHFSP-FPM. It is worth noting that the problem 
parameter T has been determined in Section 4.3 to have a significant 
advantage at 100, and therefore T is fixed to 100 in the following 
parametric analysis. 

SFLA and QSFLA were proposed for solving a DAHFSP without 
considering machine deterioration and maintenance activities. For 
dealing with the proposed DAHFSP-FPM, actual processing time under 
linear deterioration effects instead of normal processing time as well as 
flexible PM activities were considered in the decoding process of SFLA 
and QSFLA. There are six key parameters in QSFLA, which covers all the 
parameters in SFLA. For convenience, the following analysis is per
formed only for QSFLA parameters. Levels of each key parameter in 
QSFLA were set as: the population size n in {30, 60, 90, 120, 150}, 
cluster number S in {2, 3, 5, 6, 10}, repeat times per search μ in {20, 30, 
40, 50, 60}, learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ 
in {0.6, 0.7, 0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. 
Orthogonal experiment settings under instance 20 × 2 × 6 and the 
significant rank of parameter combinations are presented in Table A1 
and Table A2 in the Appendix, and the factor level trend of parameters is 
shown as Fig. A1. Hence, the parameter combination of QSFLA is sug
gested as: n = 60, S = 10, μ = 60, α = 0.4, γ = 0.6, ε = 0.4. 

ABC and QABC were used to tackle a three-stage distributed parallel 
machine scheduling with PM. To solve DAHFSP-FPM by ABC, the 
encoding representation and decoding procedure of MPMA and search 
strategies of SFLA were employed. As for QABC, the maximum tardiness 
metric in the state is replaced with the makespan, and the action set is 
replaced using the one in QSFLA. Regarding the levels of each key 
parameter in QABC, the population size n in {20, 40, 60, 80, 100}, local 
search times R in {35, 45, 55, 65, 75}, Limit in {n, 2n, 3n, 4n, 5n}, 
learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ in {0.6, 0.7, 
0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. Orthogonal 
experiment settings under instance 20 × 2 × 6 and the significant rank of 
parameter combinations are given in Table A3 and Table A4, and the 
factor level trend of parameters is shown as Fig. A2. Therefore, the 
parameter combination of QABC is determined as: n = 100, R = 75, 
Limit = n, α = 0.3, γ = 0.9, ε = 0.2. 

To ensure fairness of algorithm competition, the same encoding and 
decoding methods were used, and the maximum number of fitness 
evaluations satisfying all algorithm convergence was selected as the 

Fig. 8. Boxplot of six algorithms on makespan.  

Fig. 9. Boxplot of six algorithms on CPU time.  

Fig. 10. The optimal schedule found by MPMA-QL under the real-life case.  
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same termination condition. Comparative results of six algorithms 
regarding aRPD, bRPD and sRPD are given in Table 4, in which optimal 
values are marked in bold. 

First, it is clear that MPMA-QL outperforms SFLA and QSFLA in terms 
of aRPD and sRPD under all the instances. In terms of bRPD, SFLA finds 
the same optimal value as MPMA-QL under three instances, while 
QSFLA is comparable to MPMA-QL in strength under 13 instances. 
Second, by comparing MPMA-QL with ABC and QABC in terms of aRPD 
and bRPD, it can be seen that MPMA-QL obtained better optimization 
results under all the instances. ABC showed equivalent performance on 
only one instance in terms of aRPD and on 7 instances in terms of bRPD. 
Besides, QABC exhibited equivalent results on only one instance in terms 
of aRPD and on 12 instances in terms of bRPD. In terms of sRPD, MPMA- 
QL revealed its superiority over ABC on 28 out of 30 instances and over 
QABC on 26 out of 30 instances. The next is the comparison between 
MPMA and MPMA-QL. In terms of aRPD, MPMA is better than MPMA- 
QL under one instance and is comparable to MPMA-QL in strength 
under 2 instances. In terms of bRPD, both of them achieved the optimum 
under all the instances. In terms of sRPD, MPMA-QL revealed its supe
riority over MPMA on 24 out of 30 instances, while MPMA achieved 
better results on the remaining 6 instances as well as exhibited equiva
lent results on two other instances. 

In general, the average aRPD values of all the instances obtained by 
SFLA, QSFLA, ABC, QABC, MPMA, and MPMA-QL are 0.0235, 0.0166, 
0.0172, 0.0162, 0.0049, and 0.0027 respectively; the corresponding 
average bRPD values are 0.0082, 0.0035, 0.0053, 0.0039, 0.0000 and 
0.0000 respectively; the corresponding average sRPD values are 0.0099, 
0.0090, 0.0074, 0.0079, 0.0057, and 0.0042 respectively. Besides, all 
the instances were grouped by P, F and S to analyze the experimental 
results in further, as shown in Table 5, in which optimal values are 
marked in bold. For more intuitive comparison, Fig. 7 shows mean plots 
of four groups of P = 10, P = 15, F = 2, S = 2 in terms of aRPD, bRPD 
and sRPD. Obviously, it can be concluded that MPMA-QL has an excel
lent performance over five other competing algorithms. 

From the above statistics, some additional conclusions are given as 
follows. On the one hand, Q-learning can assist the original meta
heuristic algorithm to find better solutions and improve the stability of 
the algorithm under most scenarios. On the other hand, the performance 
of the metaheuristic algorithm combined with Q-learning still depends 
heavily on the performance of the metaheuristic algorithm. Therefore, it 
is still crucial to design efficient metaheuristic algorithms in combina
tion with problem features. 

4.5. Real-life example without PM 

A real-world scenario from a furniture company given by Cai et al. 
(2022) was introduced to test the performance of six algorithms on 
DAHFSP without PM. This real-life example is described in detail as 
follows. There are two factories that collaborate to manufacture four 
different types of cabinets. Each cabinet is constructed from the 
respective 20 components when they are processed and transferred to 
the assembly machine. During the component production phase, there 
are five stages including punching, bending, welding, power pressing 
and drilling, and each stage consists of 2 to 3 parallel machines. All 
relevant data are fully referenced to Cai et al. (2022). 

When the deterioration factors ε1, ε2 and ε3 are set to 0 and T is set to 
a large positive number, MPMA-QL can be directly used to solve 
DAHFSP without PM. For the fair competition, the maximum number of 
fitness evaluations was set to 2 × 105 for each algorithm. By conducting 
ten groups of experiments separately for each algorithm, the boxplots of 
six algorithms on makespan and CPU time under this scenario are ob
tained, as shown in Fig. 8 and Fig. 9 respectively. 

Some conclusions can be summarized as follows: (1) Compared with 
the other five algorithms, MPMA-QL found the optimal schedule with 

the makespan of 1093 (see Fig. 10) with comparable CPU time spent. (2) 
MPMA-QL also has a significant advantage in terms of the average level 
and standard deviation of ten experiments. (3) The solution quality of 
QSFLA, QABC, and MPMA-QL is basically better than the respective 
versions without considering Q-learning. In terms of solution time, 
metaheuristic algorithms combining the Q-learning process may even 
take up less computational resources. 

5. Conclusions 

Distributed assembly hybrid flow shop scheduling is one of the 
classic research problems in manufacturing scenarios such as furniture 
manufacturing. However, related studies in distributed assembly sce
narios basically ignored the impact of machine deterioration and fail
ures in the manufacturing process on the three stages of production, 
transportation, and assembly. In this study, a DAHFSP-FPM was inves
tigated and its mathematical model was established. To effectively deal 
with the complex model, a state-of-the-art PM strategy was introduced 
to substitute for position-based PM decisions in the model and an 
MPMA-QL was developed to solve the simplified model. With the 
parameter tuning of deterioration factors and maintenance thresholds, 
MPMA-QL can easily solve DAHFSP without deterioration and PM. 
Experimental results indicate that MPMA-QL is significantly better than 
the other five algorithms in most scenarios. 

Although the developed MPMA-QL shows a superior solving per
formance for DAHFSP and DAHFSP-FPM, there are still some limita
tions. In our future research, the following tasks will be considered in 
further: (1) applying multi-population swarm intelligence optimization 
approaches and advanced reinforcement learning techniques to other 
scheduling problems such as distributed assembly flexible job shop 
scheduling; (2) taking more realistic constraints such as worker alloca
tion, setup time and learning effects in distributed manufacturing sce
narios; (3) developing more effective multi-objective evolutionary 
algorithms and dynamic optimization approaches. 
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Fig. A1. Factor level trend of QSFLA for each key parameter.  

Fig. A2. Factor level trend of QABC for each key parameter.  

Table A1 
Orthogonal experiment settings of QSFLA.  

Trial number  Factor level RV 

n S μ α γ ε 

1 30 2 20  0.1 0.6  0.1  1209.58 
2 30 3 40  0.4 1  0.2  1171.55 
3 30 5 60  0.2 0.9  0.3  1166.56 
4 30 6 30  0.5 0.8  0.4  1159.05 
5 30 10 50  0.3 0.7  0.5  1151.13 
6 60 2 60  0.4 0.8  0.5  1175.05 
7 60 3 30  0.2 0.7  0.1  1189.46 
8 60 5 50  0.5 0.6  0.2  1159.14 
9 60 6 20  0.3 1  0.3  1180.94 
10 60 10 40  0.1 0.9  0.4  1151.60 
11 90 2 50  0.2 1  0.4  1198.43 
12 90 3 20  0.5 0.9  0.5  1224.71 
13 90 5 40  0.3 0.8  0.1  1165.09 
14 90 6 60  0.1 0.7  0.2  1159.35 
15 90 10 30  0.4 0.6  0.3  1155.59 
16 120 2 40  0.5 0.7  0.3  1213.76 
17 120 3 60  0.3 0.6  0.4  1170.05 
18 120 5 30  0.1 1  0.5  1179.21 
19 120 6 50  0.4 0.9  0.1  1162.87 
20 120 10 20  0.2 0.8  0.2  1178.58 
21 150 2 30  0.3 0.9  0.2  1222.79 
22 150 3 50  0.1 0.8  0.3  1208.95 
23 150 5 20  0.4 0.7  0.4  1203.40 
24 150 6 40  0.2 0.6  0.5  1174.48 
25 150 10 60  0.5 1  0.1  1160.58  
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