
Expert Systems With Applications 232 (2023) 120837

Available online 19 June 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

Q-learning driven multi-population memetic algorithm for distributed
three-stage assembly hybrid flow shop scheduling with flexible
preventive maintenance

Yanhe Jia a, Qi Yan b, Hongfeng Wang b,*

a School of Economics and Management, Beijing Information Science & Technology University, Beijing 100192, China
b College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

A R T I C L E I N F O

Keywords:
Distributed hybrid flow shop
Transportation and assembly
Preventive maintenance
Meta-heuristics
Reinforcement learning
Integration

A B S T R A C T

The distributed assembly flow shop scheduling (DAFS) problem has received much attention in the last decade,
and a variety of metaheuristic algorithms have been developed to achieve the high-quality solution. However,
there are still some limitations. On the one hand, these studies usually ignore the machine deterioration,
maintenance, transportation as well as the flexibility of flow shops. On the other hand, metaheuristic algorithms
are prone to fall into local optimality and are unstable in solving complex combinatorial optimization problems.
Therefore, a multi-population memetic algorithm (MPMA) with Q-learning (MPMA-QL) is developed to address a
distributed assembly hybrid flow shop scheduling problem with flexible preventive maintenance (DAHFSP-FPM).
Specifically, a mixed integer linear programming (MILP) model targeted at the minimal makespan is first
established, followed by an effective flexible maintenance strategy to simplify the model. To efficiently solve the
model, MPMA is developed and Q-learning is used to achieve an adaptive individual assignment for each sub
population to improve the performance of MPMA. Finally, two state-of-the-art metaheuristics and their Q-
learning-based improvements are selected as rivals of the developed MPMA and MPMA-QL. A series of numerical
studies are carried out along with a real-life case of a furniture manufacturing company, to demonstrate that
MPMA-QL can provide better solutions on the studied DAHFSP-FPM..

1. Introduction

In today’s fast-changing market, distributed manufacturing (DM) is
becoming increasingly popular as a new mode to increase production
flexibility and tackle the challenges of mass customization (Fu et al.,
2021; Lohmer & Lasch, 2021; Srai et al., 2016). Distributed assembly
flow-shop scheduling (DAFS) problem, as one of classical and chal
lenging optimization problems under DM, is applicable in many prac
tical manufacturing environments such as pharmaceutical production
(Zhao, Xu, et al., 2022), furniture industry (Cai, Lei, Wang, & Wang,
2022). DAFS has also attracted the attention of a wide range of scholars
in terms of the review paper of Komaki, Sheikh, and Malakooti (2019) as
well as related works of recent three years.

A large portion of the research focused on the two-stage DAFS with
distributed flow-shop fabrication and single-machine assembly and
presented more and more efficient optimization algorithms. For
instance, Zhao, Di, et al. (2022) and Zhao, Xu, et al. (2022) respectively

designed a self-learning hyper-heuristic approach and a population-
based iterated greedy algorithm to achieve the minimization of the
total flow time. Zhang et al. (2022) presented a matrix cube-based
estimation of distribution algorithm to tackle an energy-efficient DAFS
with the objectives of minimizing the makespan and total carbon
emission. Li, Pan, et al. (2022) developed a referenced iterated greedy
algorithm to minimize the total tardiness. Song, Yang, Lin, and Ye
(2023) proposed an effective hyper heuristic-based memetic algorithm
to minimize the maximum completion time.

Some studies have additionally considered assembly processes with
multiple assembly machines (Framinan, Perez-Gonzalez, & Fernandez-
Viagas, 2019). For instance, Li et al. (2019) investigated a two-stage
DAFS with parallel batching and linear deteriorating and developed a
knowledge-based hybrid artificial bee colony algorithm. Lei, Su, and Li
(2021) proposed a cooperated teaching–learning-based optimization
algorithm to deal with a two-stage DAFS targeted at the minimal
makespan, where each factory is equipped with an assembly machine.

* Corresponding author.
E-mail addresses: yhejia@bistu.edu.cn (Y. Jia), yanqqz@stumail.neu.edu.cn (Q. Yan), hfwang@mail.neu.edu.cn (H. Wang).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.120837
Received 1 March 2023; Received in revised form 11 June 2023; Accepted 11 June 2023

mailto:yhejia@bistu.edu.cn
mailto:yanqqz@stumail.neu.edu.cn
mailto:hfwang@mail.neu.edu.cn
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120837
https://doi.org/10.1016/j.eswa.2023.120837
https://doi.org/10.1016/j.eswa.2023.120837

Expert Systems With Applications 232 (2023) 120837

2

Cai et al. (2022) proposed a shuffled frog-leaping algorithm for a three-
stage distributed assembly hybrid flow shop scheduling (DAHFS) prob
lem, in which each factory has a hybrid flow shop for fabrication, a
transportation machine for collecting and transferring, and an assembly
machine for final assembly.

Despite these DAFS-related initiatives, there is still more research
that has to be refined. Various DAFS variations can be researched further
in light of actual scenario demands and past research. On the one hand,
DAHFS is rarely studied in existing studies. In reality, hybrid flow shop
scheduling (HFS) and distributed hybrid flow shop scheduling (DHFS)
problems are very common in real-world applications and have received
a lot of attention in academia (Neufeld, Schulz, & Buscher, 2022; Shao,
Shao, & Pi, 2020). Therefore, considering the flexibility of flow shops in
DAFS is significant and realistic (Cai et al., 2022; Zhao, Zhou, & Liu,
2021). On the other hand, previous research typically ignored the
transportation stage that plays an important and essential role between
the production and assembly stages; thus, there is a need for a more in-
depth study of the three-stage DAFS.

Moreover, machine deterioration and failures are inevitable in real-
life assembly production, yet they are often neglected in DAFS-related
research. There has been a succession of scholars to integrate appro
priate maintenance activities into the assembly scheduling process in
other manufacturing scenarios. For example, Zhang and Tang (2021)
addressed a two-stage assembly flow shop scheduling problem with
flexible preventive maintenance (PM) and parallel assembly machines,
in which maintenance levels were defined to evaluate the states of each
machine. Wang, Lei, et al. (2022) designed a Q-learning-based artificial
bee colony algorithm for a three-stage distributed assembly scheduling
problem considering maintenance constraints. Therefore, joint optimi
zation of DAFS and maintenance activities is also a significant variant of
DAFS.

As mentioned above, existing related studies have mainly used a
variety of meta-heuristic algorithms due to the complicated character
istic of DAFS. In terms of optimization methods, further improving the
solving performance of these meta-heuristics is also a challenging
problem. The advent of reinforcement learning (RL) has brought new
possibilities to solve this challenge. In the last three years, RL, especially
Q-learning, has been gradually applied in many manufacturing sce
narios such as single-machine (Wang, Yan, et al., 2021; Wang, Ren,
et al., 2022), parallel machines (Guo, Zhuang, Huang, & Qin, 2020; Ruiz
Rodríguez et al., 2022), flow-shop and its variants (Lee & Kim, 2022; Li,
Gao, et al., 2022; Yang, Wang, & Xu, 2022), job shop and its variants
(Du, Li, Li, & Duan, 2022; Li, Gong, et al., 2022; Wang, Sarker, et al.,
2021). However, the application of RL in DAFS-based variants is still
limited. For this reason, a multi-population memetic algorithm (MPMA)
with Q-learning (MPMA-QL) is designed for the DAHFS problem with
flexible PM (DAHFSP-FPM). The main innovations and contributions are
presented below.

(1) Both linear deterioration and flexible PM are integrated into the
DAHFS problem proposed by Cai et al. (2022), which is treated as
DAHFSP-FPM. A novel mixed integer linear programming (MILP)
model is provided to formulate the studied DAHFSP-FPM and the
CPLEX solver (version 22.1) is used to examine the correctness of
the MILP model.

(2) To effectively solve the MILP model, position-based PM decisions
are reduced to an effective PM strategy, and a decoding scheme
considering deteriorating effects and PM constraints is designed
to map the three-level encoding to the corresponding makespan.

(3) In the developed MPMA-QL, the population is divided into seven
subpopulations that have respective crossover strategies to
ensure a high population diversity. Besides, Q-learning is
employed to dynamically adjust the number of individuals for
each subpopulation to improve the performance of MPMA.

The rest of the study is organized as follows. In Section 2, DAHFSP-
FPM is described in detail and its MILP model is established. The
developed MPMA-QL in Section 3 is used to solve the complex problem
model, followed by a series of numerical studies in Section 4 to
demonstrate the performance of the MPMA-QL. In the final section,
conclusions and potential research topics are presented.

2. Problem description and model formulation

The scenario of the studied DAHFSP-FPM is illustrated in Fig. 1,
which is also described in detail as follows. In the distributed
manufacturing mode, there are a total of F factories to collaborate in the
manufacture of P products. These factories are located in different
geographical locations, but the machine resources configured inside the
factories are identical. Each product needs to be assembled from certain
components in one factory. Specifically, the final formation of the
product passes through three stages, i.e., the production, transportation,
and final assembly stages of corresponding components. At the pro
duction stage, each component is required to complete its l operations in
a hybrid flow shop with l stages, in which each flow stage has multiple
parallel machines for the flexible manufacturing of components. Once
all the components of a product have been processed, they are sequen
tially moved to the transportation machine and assembly machine for
the transportation stage and assembly stage, in which there is only one
transportation machine and one assembly machine in each factory.

With prolonged use, all machines will experience wear and tear,
which may result in an increase in normal processing time. Thus, a linear
deterioration function (Li et al., 2019) is introduced in this study to
describe the above degradation process, which can reflect the relation
ship between the machine’s age and actual processing time. To improve
this deterioration effect and to avoid machine breakdowns as much as
possible, an appropriate maintenance strategy is necessary. In this study,

Fig. 1. Illustration of the proposed three-stage DAHFSP-FPM.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

3

maintenance is an additional service provided by the supplier when the
machine is sold. From the supplier’s perspective, the more maintenance
is performed, the more additional revenue can be obtained. For this
reason, it is assumed that the supplier will accept any maintenance plan
presented by the manufacturer. In other words, the purpose of this study
is to assist the manufacturer in determining the optimal production and
maintenance plans of the DAHFSP-FPM targeted at the minimal make
span. Notations throughout this study are defined in Table 1.

To ensure the optimality of the proposed DAHFSP-FPM, a mixed
integer linear programming (MILP) model with position-based mainte
nance decisions (i.e., PM is possible after each operation) is presented
below.

min Cmax (1)

s.t.

Cmax ≥ E3
g +A3

g∀g (2)

E3
g ≥ E2

g +A2
g∀g (3)

E2
g ≥ E1

il +A1
il∀g, i ∈ Ωg, l (4)

E1
il ≥ E1

i,l− 1 +A1
i,l− 1∀i, l ≥ 2 (5)

E1
jl ≥ E1

il +A1
il + ξ1

jlt
1
PM − L

(
2 − X ilfm,k− 1 − X jlfmk

)
∀i, j, l, f ,m, k ≥ 2 (6)

E1
i1 ≥ 0∀i (7)

a1
il ≥ 0∀i, l (8)

A1
il = P1

il + ε1a1
il∀i, l (9)

a1
jl ≥ a1

il +A1
il − L

(
2 − X ilfm,k− 1 − X jlfmk + ξ1

jl

)
∀i, j, l, f ,m, k ≥ 2 (10)

a1
il ≥ − L

(
1 − ξ1

il

)
∀i, l (11)

ξ1
il ≤ 1 −

∑

f

∑

m
X ilfm1∀i, l (12)

E2
h ≥ E2

g +A2
g + ξ2

ht2
PM − L

(
2 − Y gf ,q− 1 − Y hfq

)
∀g, h, f , q ≥ 2 (13)

a2
g ≥ 0∀g (14)

A2
g = P2

g + ε2a2
g∀g (15)

a2
h ≥ a2

g +A2
g − L

(
2 − Y gf ,q− 1 − Y hfq + ξ2

h

)
∀g, h, f , q ≥ 2 (16)

a2
g ≥ − L

(
1 − ξ2

g

)
∀g (17)

ξ2
g ≤ 1 −

∑

f
Y gf 1∀g (18)

E3
h ≥ E3

g +A3
g + ξ3

ht3
PM − L

(
2 − Z gf ,q− 1 − Z hfq

)
∀g, h, f , q ≥ 2 (19)

a3
g ≥ 0∀g (20)

A3
g = P3

g + ε3a3
g∀g (21)

a3
h ≥ a3

g +A3
g − L

(
2 − Z gf ,q− 1 − Z hfq + ξ3

h

)
∀g, h, f , q ≥ 2 (22)

a3
g ≥ − L

(
1 − ξ3

g

)
∀g (23)

ξ3
g ≤ 1 −

∑

f
Z gf 1∀g (24)

∑

m

∑

k
X ilfmk =

∑

m′

∑

k′

X jlf m′k′∀g, i, j ∈ Ωg, l, f (25)

∑

f

∑

m

∑

k
X ilfmk = 1∀i, l (26)

∑

i
X ilfmk ≤ 1∀l, f ,m, k (27)

∑

i
X ilfmk ≤

∑

i
X ilfm,k− 1∀l, f ,m, k ≥ 2 (28)

Table 1
Notations throughout the proposed DAHFSP-FPM.

Notations Descriptions

Indices
P Number of products
N Total number of components for each product
F Number of factories
S Number of stages in hybrid flow shop
M Number of machines at the production stage
g, h Product index, where g, h ∈ {1, 2,⋯, P}
i, j Component index, where i, j ∈ {1, 2,⋯,N}

f Factory index, where f ∈ {1,2,⋯, F}
l Operation index of components, where l ∈ {1,2,⋯, S}
Ωg Set of components for product g
m Machine index at the production stage, where m ∈ {1,2,⋯,M}

k Sequential index of operations of the same machine at the production
stage, where k = 1,2,⋯

q Sequential index of products of the same machine at the last two stages,
where q = 1,2,⋯

Parameters
Oil Operation l of component i at the production stage
P1

il Normal processing time of Oil at the production stage
P2

g Normal processing time of product g at the transportation stage

P3
g Normal processing time of product g at the assembly stage

ε1 Machine deterioration factor at the production stage
ε2 Machine deterioration factor at the transportation stage
ε3 Machine deterioration factor at the assembly stage
t1PM Duration of a PM at the production stage
t2PM Duration of a PM at the transportation stage
t3PM Duration of a PM at the assembly stage
L A large positive number
T Upper limit of cumulative running time
α Learning rate
γ Discount factor
ε Greedy rate

Decision variables
A1

il Actual processing time of Oil

A2
g Actual processing time of product g at the transportation stage

A3
g Actual processing time of product g at the assembly stage

a1
il Machine’s age prior to Oil

a2
g Machine’s age prior to product g at the transportation stage

a3
g Machine’s age prior to product g at the assembly stage

E1
il Earliest start time of Oil

E2
g Earliest start time of product g at the transportation stage

E3
g Earliest start time of product g at the assembly stage

Cmax Maximum completion time of products, i.e., makespan
ξ1

il 1 if PM is performed prior to Oil and 0 otherwise
ξ2

g 1 if PM is performed prior to product g at the transportation stage and
0 otherwise

ξ3
g 1 if PM is performed prior to product g at the assembly stage and

0 otherwise
X ilfmk 1 if Oil is processed at position k on machine m in factory f and

0 otherwise
Y gfq 1 if product g is transported at position q in factory f and 0 otherwise
Z gfq 1 if product g is assembly at position q in factory f and 0 otherwise

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

4

∑

g
Y gfq ≤ 1∀f , q (29)

∑

g
Y gfq ≤

∑

g
Y gf ,q− 1∀f , q ≥ 2 (30)

∑

g
Z gfq ≤ 1∀f , q (31)

∑

g
Z gfq ≤

∑

g
Z gf ,q− 1∀f , q ≥ 2 (32)

∑

q
Y gfq =

∑

m

∑

k
X ilfmk∀g, i ∈ Ωg, l, f (33)

∑

q
Z gfq =

∑

m

∑

k
X ilfmk∀g, i ∈ Ωg, l, f (34)

where the optimization objective is determined by (1) and (2), i.e.,
minimizing the makespan of the three-stage manufacturing process.
Constraints (3) and (4) respectively represent the earliest starting time
of each product at transportation and assembly stages. Constraint (5)
shows that the earliest starting time of each component must be greater
than or equal to the completion time of the previous operation of the
component (if any). Constraints (6), (13) and (19) specify that the
earliest starting time of each component (or product) must be more than
or equal to the completion time of the previous component (or product)
at the same machine (if any), in which if PM is performed immediately
after the previous component (or product), the maintenance time is
counted as part of the completion time of the previous component (or
product). Constraint (7) initializes the earliest starting time at the pro
duction stage. Constraints (8), (14) and (20) ensure the initial machine’s
age as 0 at all the machines of the three-stage manufacturing process.

Regarding machine deterioration and maintenance, constraints (9),
(15) and (21) are used to calculate the actual processing time consid
ering linear deterioration effects at the production, transportation, and
assembly stages respectively. Constraints (10), (16) and (22) respec
tively reflect the update of the machine’s age under cumulative deteri
orating effects without PM at the production, transportation, and
assembly stages. Constraints (11), (17) and (23) demonstrate the perfect
effect of PM activities at the above three stages, i.e., the implementation
of PM can restore the machine’s age to 0.

As for the relationship between decision variables, constraints (12),
(18) and (24) specify that the maintenance decision prior to the first
operation of any machine must be 0. Constraints (25), (33) and (34)
guarantee that all components of one product must be assigned to the

same factory. Constraint (26) represents that each operation can only be
processed on one machine of one factory. Constraints (27), (29) and (31)
ensure that each machine at different stages can process at most one
operation at any time. Constraints (28), (30) and (32) show that there is
no vacant position before a filled position of the same machine at
different stages.

The MILP model has been validated by the CPLEX solver under small-
scale cases. Due to the NP-hard nature of DAHFSP-FPM, a medium-scale
case, e.g., six products, each of which consists of two to five components,
and two factories, each of which has two stages and two to five machines
per stage in the flow-shop production process, can hardly find an
optimal solution in two hours. Although the production-maintenance
joint scheduling plan derived in this way is theoretically optimal,
finding the optimal solution in such a huge solution space is almost
impossible using any optimization approach. As a result, we reduce the
position-based maintenance decision to an efficient maintenance strat
egy, that is, the cumulative running time of the machine cannot exceed a
predetermined value T. In this way, maintenance activities can be
determined given a production sequence, avoiding a large number of
maintenance decisions while ensuring maintenance periodicity. Hence,
constraints (12), (18) and (24) need to be adjusted to the following
constraints respectively. Fig. 2 illustrates the sufficient condition for
maintenance execution with constraint (35) as an example.

ξ1
jl =

⎧
⎪⎪⎨

⎪⎪⎩

1, if P1
jl + (1 + ε1)

(
a1

il + A1
il

)〉
T

andX ilfm,k− 1 + X jlfmk = 2
0, otherwise

∀i, j, l, f ,m, k ≥ 2 (35)

ξ2
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P2
h + (1 + ε2)

(
a2

g + A2
g

)〉
T

andY gf ,q− 1 + Y hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (36)

ξ3
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P3
h + (1 + ε3)

(
a3

g + A3
g

)〉
T

andZ gf ,q− 1 + Z hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (37)

However, the simplified model considering the above constraints is
still NP-hard, and the optimal solution can hardly be obtained in prac
tice. To efficiently solve the simplified model, an MPMA and its Q-
learning-based improvement are developed in the next section to find
near-optimal solutions.

Fig. 2. Illustration of the sufficient condition for PM.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

5

3. MPMA-QL for DAHFSP-FPM

The basic idea behind memetic algorithms (MAs) is combining
evolutionary operators such as crossover and mutation with local search
to achieve better performance than either approach alone. Different
designs of evolutionary search and local search strategies correspond to
different MAs. To enhance the search capability during the solving
process of DAHFSP-FPM, an improved MA called MPMA-QL is specially
designed in this study, where the multi-population strategy is applied to
MA and Q-learning is introduced to adaptively adjust the individual
quantity among multiple subpopulations. In general, the first three
subsections introduce the main components of MPMA, followed by the
Q-learning process, and the overall framework of MPMA-QL is given in
the last subsection.

3.1. Encoding and decoding

In this study, a three-string encoding strategy including factory string
(FS), product string (PS), and component string (CS) is introduced to
represent the solution. FS is used to specify the factory to which each
product is assigned. PS indicates the processing sequence for all products
during the three-stage manufacturing process. Moreover, CS is used to
represent the processing sequence for all components of each product.

Regarding the generation of the three-string encoding, PS and CS are
completely randomly generated, while some FSs are generated using the
following Heuristic to ensure the quality of the initial population and
others are randomly generated to maintain population diversity. The
pseudo code of the population initialization is given in Algorithm 1,
where n denotes the population size.

Heuristic: The total time for each product to be manufactured in three
consecutive stages without considering deterioration is calculated and
sorted by the longest processing time first (LPT) rule, and then the sorted

products are distributed to each factory in turn based on the randomly
generated factory order.

An illustration of the three-string encoding with the DAHFSP-FPM in
Fig. 1 as an example is presented in Fig. 3. It is clear that products 1, 4
and 6 are assigned to factory 1 in the order of 6–1-4, and the permuta
tion of corresponding components is 21-22-2-3-1-16-13-15-14, while the
other three products are assigned to factory 2 in the order of 2-3-5, and
the permutation of corresponding components is 4-6-5-7-9-8-10-12-11-
17-19-18-20. The three-step decoding process is defined in detail as
follows.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

6

The first step is the decoding of the production phase. The product
manufacturing sequence and the factory assigned to each product are
first determined based on PS and FS, and the machine with the earliest
available time is assigned to each component of each product in turn
according to the order of component codes of each product at each stage
of hybrid flow-shop production under the corresponding factory.
Moreover, the earliest start time of each component must satisfy con
straints (5) and (6) in the MILP model. The second step is the decoding of
the transportation phase. The earliest start time for each product is
determined in order of the product code in turn. This depends on the
maximum completion time for all components of that product, and the
transportation completion time of the previous product, as shown in
constraints (4) and (13). Similarly, constraints (3) and (19) are strictly
satisfied in the decoding of the assembly phase.

Unlike previous studies such as Cai et al. (2022), the decoding pro
cess of components (or products) requires calculating the actual pro
cessing time and updating the machine’s age based on the linear
deterioration effect, as well as determining in real time whether the
accumulated machine operation time exceeds a set threshold. If the
threshold is exceeded (see Fig. 2), PM is performed to reset machine’s
age to 0 and the component (or product) is processed immediately af
terwards; otherwise, the component (or product) can be processed
directly.

3.2. Population division and exploration search

The idea of multi-population collaborative optimization is intro
duced to enhance the performance of exploration search in solving
complex DAHFSP-FPM. The exploration search consists of crossover and
mutation operations. Regarding crossover operations, we design seven
crossover strategies based on the characteristics of three-level coding
and these crossover strategies have their own advantages in different
scenarios. Compared with a single crossover approach, the solutions
generated by multiple crossover approaches correspond to different
solution structures, which can avoid falling into the local optimum
prematurely. As a consequence, the whole population with n individuals
is divided into seven subpopulations with respective crossover strate
gies, in which the number of individuals in each subpopulation is rela

tively even and two crossover processes are performed using each
crossover strategy. The details are presented as follows.

The first crossover strategy C1 is dedicated to FS, as shown in Fig. 4.
The first step is the crossover within a subpopulation, as shown in Al
gorithm 2. The best and worst individuals in the current subpopulation s
are first determined, and one individual Π from the rest of the subpop
ulation is randomly selected as the optimized object. The codes with the
same position as the worst individual are removed and the blanks are
filled in order with reference to the coding order of the best individual,
which is essentially a position-based crossover (PBX). Such an approach
can guide individuals away from the poor solution and explore better
neighborhood structures based on the current optimal individual. If the
new solution after the above crossover is worse than Π, the PBX oper
ation in Cai et al. (2022) is performed for Π and a random individual
from the current subpopulation s.

The second step is the crossover between subpopulations, as pre
sented in Algorithm 3. The subpopulation s* with the global best so
lution Πb* is first determined and the worst solution Πw* of
subpopulation s* is also found. Then, Πb* and Πw* are used to guide the
update of Π using the crossover strategy in subpopulation s*. If the new
solution after the above crossover is worse than Π, the PBX operation is
executed for Π and a random individual from a random subpopulation
sΔ. Such an approach allows for interaction between subpopulations,
which can effectively improve the structure of solutions.

The other six crossover strategies are similar to C1 except that
crossover operations are performed for different parts of the three-level
code. C2 is specifically designed for PS. C3 is a separate operation for CS.
C4-C7 perform multi-level crossover operations for the combinations of
FS and PS, FS and CS, PS and CS, and FS and PS and CS, respectively.

After two rounds of crossover processes, two mutation mechanisms
including NS1 and NS2 proposed by Cai et al. (2022) are randomly
assigned to each individual, as shown in the following Algorithm 4.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

7

3.3. Knowledge-based exploitation search

Exploration search alone easily falls into local optima, so it is crucial
to design knowledge-based exploitation search strategies to efficiently
adjust the neighborhood structure of the solution. To improve the

computational efficiency of MPMA, this study conducts three
knowledge-based exploitation searches including LS1, LS2, LS3 for the
best individual of each subpopulation, as shown in Algorithm 5.

LS1: Select one product from the factory with longer completion time
(which is treated as the critical factory) and exchange it with one
product from other factories. The above procedure is repeated five
times. If Cmax cannot be improved, the best individual from the five
experiments is tried to replace the worst individual in the subpopulation.

LS2: A product is randomly selected from PS and inserted sequen
tially into all possible positions to evaluate fitness values. There are P
possible neighborhood structures, and thus the fitness is evaluated P
times. By comparing the fitness values, the optimal insertion position of
the product is found to ensure a better neighborhood structure.

LS3: The component codes of each product are adjusted in a similar
way to LS2. Specifically, one component is selected randomly from each
product in turn and is inserted into the optimal position of the corre
sponding component code, and thus the total number of fitness assess
ments depends on the total number of components.

Fig. 3. Illustration of three-string representation.

Fig. 4. Crossover illustration with FS as an example.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

8

3.4. Q-learning process

In the developed MPMA, there is a lack of adaptive adjustment of the
number of individuals of each subpopulation. To further achieve effec
tive information exchange between subpopulations and enhance the
solving performance of MPMA, Q-learning is employed to dynamically

adjust individual numbers of seven subpopulations instead of random
adjustment. The procedure of the Q-learning update is given in Algo
rithm 6, in which ωmin, ωmax, C◦ , C*, σ, a, Q, σ′ and a′ are defined in
Algorithm 7. In addition, the definitions of state, action and reward in
the Q-learning process are presented below.

State: System state is evaluated by the difference between the
maximum value ωmax and minimum value ωmin of the number of in
dividuals in each subpopulation. It can be found that the number of
states is not fixed. If a new state σ′ is generated during the Q-learning
process that did not appear before, the state is added to the Q-table Q.

Action: Action set A is composed of three actions, i.e., increase the
number of individuals of the subpopulation that generates more new
solutions; decrease the number of individuals of the subpopulation that
generates more new solutions; no change in the number of individuals in
each subpopulation. The well-known ε-greedy strategy is used to select
an action, as described in lines 8–12 in Algorithm 6. In addition, the
population size cannot be changed by the selected action.

Reward: Reward settings depend on the change of the optimal
objective. A reward of +1 is obtained if the optimal objective becomes
better and a punishment of − 1 otherwise.

3.5. Overall description of MPMA-QL

MPMA-QL is a combination of MPMA and Q-learning algorithm to
further improve MPMA, and thus the algorithm framework of MPMA-QL
is based on the developed MPMA in Section 3.1–3.3, integrating the
proposed Q-learning process in Section 3.4. The detailed steps of MPMA-
QL are presented below and the flow chart of MPMA-QL is shown in
Fig. 5.

(1) Initialize the population with n randomly generated individuals,
and then evaluate the fitness of each individual. Besides, initialize
N that consists of the number of individuals for each
subpopulation.

(2) Randomly remove some individuals with identical fitness in the
population, and some new random individuals are added.

(3) Conduct population division according to Section 3.2.
(4) Perform internal crossover, external crossover, and local search

for each individual of each subpopulation based on Section 3.2
and Section 3.3.

(5) If the termination condition is not met, all subpopulations are
combined into a whole population; otherwise, the algorithm is
terminated.

(6) If the best solution is not updated for 10 consecutive generations,
re-initialize N and terminate the Q-learning process (i.e., let ε =

1), and then go to step (2); otherwise, select an action using
ε-greedy strategy to adjust the individual numbers of
subpopulations.

(7) Update the system state, reward, and Q-table, and then go to step
(2).

Furthermore, the pseudo code of the developed MPMA-QL is given in
Algorithm 7, where Ω denotes the maximum number of generations.
The procedure of MPMA can be obtained by removing lines 3 and 25
from Algorithm 7 and replacing lines 28 and 29 with a random action
.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

9

Fig. 5. Flow chart of MPMA-QL.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

10

The difference between MPMA and MPMA-QL is mainly the Q-
learning process as presented in Algorithm 6. The complexity of the Q-
learning process is O(3), since the only operation required is to obtain
the maximum Q-value or a random one from A of size 3. As a result, the
complexity overhead of MPMA-QL is only O(3) = O(1) extra computa
tions per generation when compared to MPMA. In fact, MPMA-QL may
even achieve better results with even less computation time than MPMA,
as the Q-learning process can assist the meta-heuristic algorithm to
converge quickly. Experimental evidence for this fact is provided in
Section 4.5.

4. Computational experiments

In this section, a series of computational experiments were con
ducted to evaluate the performance of the developed MPMA and MPMA-
QL, in which two state-of-the-art meta-heuristics and their Q-learning-
based improvements were selected as rivals. All algorithms were
implemented in Python 3.8 and run on an Apple M1 CPU (3.20 GHz/
8.00 GB RAM).

4.1. Test instance settings

To examine the algorithm performance for solving the proposed
DAHFSP-FPM, 30 instances (depicted as P× F× S) were randomly

generated based on the combination of P ∈ {10,15,20,25,30}, F =

{2,4}, S ∈ {2,4,6}, in which P1
il, P

2
g and P3

g were randomly taken integer
values from the interval [1,100], each product consists of 2 to 5 com
ponents, and each stage of the hybrid flow shop consists of 2 to 5 parallel
machines. Besides, it is assumed that deterioration rates and mainte
nance durations were known in advance: ε1, ε2 and ε3 were set to 0.1,
0.05 and 0.15 respectively, and t1PM, t2PM, t3PM were all 10.

4.2. Performance metric

The relative percentage deviation (RPD) metric (Mao, Pan, Miao, &
Gao, 2021) was introduced to measure the performance of MPMA-QL
and five other competitive algorithms, which is defined as follows:

RPD =
Calg − Cbest

Cbest
(38)

where Calg denotes the makespan obtained by a certain optimization
algorithm on an instance, and Cbest represents the optimal makespan
among the results obtained by all the competing algorithms on that
instance. Each algorithm under each test instance was carried out 10
times independently to achieve consistent and reliable results, reducing
the variance caused by the randomness. Finally, the average RPD
(aRPD), the best RPD (bRPD), and the standard deviation of RPD (sRPD)
were calculated respectively to evaluate the solution quality of the al
gorithm.

4.3. Key parameter settings of MPMA-QL

There are five key parameters of MPMA-QL, i.e., population size n,
upper limit of cumulative running time T and Q-learning-related three
parameters α, γ and ε. We selected four levels for each parameter to
analyze the impact of different parameter configurations on the per
formance of MPMA-QL, i.e., n = {40,60,80,100}, T =

{100,120,150,180}, α = {0.1,0.2,0.3, 0.4}, γ = {0.7,0.8,0.9, 1}, ε =

{0.1,0.2, 0.3, 0.4}. There are a total of 45 parameter combinations. We
picked an orthogonal array with 16 parameter combinations based on
Taguchi’s approach to lessen the complexity of the parameter analysis,
where instance 20 × 2 × 6 was chosen as the test instance. To assess the
sensitivity of the above key parameters, MPMA-QL with each parameter
combination was run 10 times, and the mean value of the makespan over
ten independent runs was determined as the response variable (RV), as
shown in Table 2. Besides, Table 3 shows the significant rank of
parameter combinations, and then Fig. 6 intuitively shows the factor
level trend of parameters.

From Table 3, it is obvious that T is the most significant parameter,
which reflects that a proper maintenance cycle can greatly improve
deteriorating effects. n plays the second most important role, which
means that a proper population size can improve the solution perfor
mance of metaheuristics. Regarding Q-learning-related parameters, ε, α
and γ play the third, fourth and fifth roles respectively. Based on the RV
results in Fig. 6, a promising parameter combination is suggested below:
n = 100, T = 100, α = 0.3, γ = 0.8, ε = 0.2, which will be used in the
subsequent experiments.

Table 2
Orthogonal experiment settings of MPMA-QL.

Trial number Factor level RV

n T α γ ε

1 40 100 0.1 0.7 0.1 1156.55
2 40 120 0.2 0.8 0.2 1159.45
3 40 150 0.3 0.9 0.3 1165.75
4 40 180 0.4 1 0.4 1170.46
5 60 100 0.2 0.9 0.4 1155.32
6 60 120 0.1 1 0.3 1160.09
7 60 150 0.4 0.7 0.2 1159.29
8 60 180 0.3 0.8 0.1 1170.84
9 80 100 0.3 1 0.2 1151.59
10 80 120 0.4 0.9 0.1 1159.04
11 80 150 0.1 0.8 0.4 1159.28
12 80 180 0.2 0.7 0.3 1175.28
13 100 100 0.4 0.8 0.3 1149.14
14 100 120 0.3 0.7 0.4 1149.37
15 100 150 0.2 1 0.1 1157.40
16 100 180 0.1 0.9 0.2 1163.39

Table 3
Response and rank of parameters for MPMA-QL.

Level n T α γ ε

1 1163.05 1153.15 1159.83 1160.12 1160.96
2 1161.39 1156.99 1161.86 1159.68 1158.43
3 1161.30 1160.43 1159.39 1160.88 1162.57
4 1154.83 1169.99 1159.48 1159.88 1158.61
Delta 8.22 16.84 2.47 1.20 4.14
Rank 2 1 4 5 3

Fig. 6. Factor level trend of MPMA-QL for each key parameter.

Y. Jia et al.

ExpertSystemsW
ithApplications232(2023)120837

11

Table 4
Comparative results of six algorithms on aRPD, bRPD,.sRPD

Instance SFLA QSFLA ABC QABC MPMA MPMA-QL

aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD

10 × 2 × 2 0.0122 0.0021 0.0055 0.0112 0.0000 0.0058 0.0085 0.0000 0.0053 0.0099 0.0021 0.0048 0.0037 0.0000 0.0045 0.0019 0.0000 0.0037
10 × 2 × 4 0.0254 0.0132 0.0066 0.0137 0.0026 0.0066 0.0218 0.0090 0.0070 0.0191 0.0086 0.0075 0.0035 0.0000 0.0038 0.0013 0.0000 0.0027
10 × 2 × 6 0.0083 0.0000 0.0030 0.0052 0.0000 0.0031 0.0073 0.0016 0.0023 0.0054 0.0000 0.0034 0.0039 0.0000 0.0037 0.0026 0.0000 0.0036
10 × 4 × 2 0.0156 0.0013 0.0140 0.0160 0.0000 0.0104 0.0020 0.0000 0.0045 0.0056 0.0000 0.0059 0.0009 0.0000 0.0017 0.0009 0.0000 0.0017
10 × 4 × 4 0.0079 0.0036 0.0036 0.0077 0.0000 0.0058 0.0022 0.0000 0.0033 0.0007 0.0000 0.0015 0.0000 0.0000 0.0000 0.0004 0.0000 0.0011
10 × 4 × 6 0.0031 0.0000 0.0093 0.0019 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 × 2 × 2 0.0217 0.0117 0.0078 0.0088 0.0000 0.0063 0.0153 0.0049 0.0096 0.0201 0.0033 0.0091 0.0045 0.0000 0.0070 0.0044 0.0000 0.0057
15 × 2 × 4 0.0166 0.0054 0.0071 0.0083 0.0000 0.0076 0.0184 0.0097 0.0056 0.0140 0.0000 0.0096 0.0048 0.0000 0.0063 0.0034 0.0000 0.0039
15 × 2 × 6 0.0195 0.0057 0.0103 0.0135 0.0054 0.0037 0.0132 0.0001 0.0079 0.0137 0.0029 0.0054 0.0026 0.0000 0.0039 0.0019 0.0000 0.0022
15 × 4 × 2 0.0567 0.0196 0.0216 0.0332 0.0033 0.0177 0.0240 0.0063 0.0095 0.0183 0.0055 0.0072 0.0063 0.0000 0.0075 0.0054 0.0000 0.0092
15 × 4 × 4 0.0243 0.0040 0.0144 0.0171 0.0000 0.0123 0.0136 0.0019 0.0079 0.0110 0.0000 0.0072 0.0050 0.0000 0.0065 0.0044 0.0000 0.0051
15 × 4 × 6 0.0246 0.0117 0.0080 0.0181 0.0000 0.0127 0.0176 0.0089 0.0067 0.0164 0.0000 0.0073 0.0061 0.0000 0.0073 0.0013 0.0000 0.0021
20 × 2 × 2 0.0186 0.0084 0.0066 0.0105 0.0000 0.0084 0.0157 0.0000 0.0070 0.0143 0.0000 0.0106 0.0051 0.0000 0.0058 0.0046 0.0000 0.0059
20 × 2 × 4 0.0211 0.0084 0.0080 0.0153 0.0027 0.0109 0.0248 0.0079 0.0096 0.0179 0.0045 0.0101 0.0024 0.0000 0.0020 0.0012 0.0000 0.0026
20 × 2 × 6 0.0192 0.0107 0.0083 0.0157 0.0000 0.0111 0.0180 0.0012 0.0087 0.0193 0.0041 0.0100 0.0050 0.0000 0.0055 0.0031 0.0000 0.0052
20 × 4 × 2 0.0532 0.0228 0.0147 0.0298 0.0141 0.0164 0.0307 0.0090 0.0136 0.0316 0.0237 0.0101 0.0067 0.0000 0.0086 0.0026 0.0000 0.0044
20 × 4 × 4 0.0374 0.0110 0.0159 0.0251 0.0115 0.0118 0.0291 0.0151 0.0113 0.0229 0.0107 0.0078 0.0088 0.0000 0.0121 0.0068 0.0000 0.0092
20 × 4 × 6 0.0269 0.0046 0.0146 0.0249 0.0020 0.0119 0.0223 0.0022 0.0095 0.0226 0.0017 0.0107 0.0050 0.0000 0.0070 0.0035 0.0000 0.0048
25 × 2 × 2 0.0067 0.0022 0.0035 0.0078 0.0004 0.0055 0.0088 0.0043 0.0044 0.0091 0.0006 0.0051 0.0028 0.0000 0.0036 0.0020 0.0000 0.0034
25 × 2 × 4 0.0132 0.0047 0.0055 0.0089 0.0010 0.0066 0.0136 0.0040 0.0055 0.0153 0.0000 0.0093 0.0060 0.0000 0.0048 0.0017 0.0000 0.0033
25 × 2 × 6 0.0165 0.0040 0.0076 0.0139 0.0021 0.0074 0.0166 0.0097 0.0053 0.0139 0.0000 0.0101 0.0057 0.0000 0.0053 0.0016 0.0000 0.0032
25 × 4 × 2 0.0306 0.0107 0.0153 0.0219 0.0034 0.0144 0.0175 0.0043 0.0113 0.0216 0.0081 0.0102 0.0073 0.0000 0.0082 0.0021 0.0000 0.0055
25 × 4 × 4 0.0356 0.0228 0.0092 0.0217 0.0000 0.0095 0.0206 0.0000 0.0117 0.0245 0.0064 0.0105 0.0087 0.0000 0.0099 0.0020 0.0000 0.0029
25 × 4 × 6 0.0350 0.0000 0.0146 0.0231 0.0041 0.0113 0.0263 0.0127 0.0112 0.0217 0.0000 0.0124 0.0060 0.0000 0.0077 0.0051 0.0000 0.0085
30 × 2 × 2 0.0078 0.0026 0.0035 0.0090 0.0032 0.0033 0.0084 0.0000 0.0052 0.0108 0.0038 0.0049 0.0040 0.0000 0.0044 0.0016 0.0000 0.0029
30 × 2 × 4 0.0155 0.0076 0.0059 0.0155 0.0072 0.0050 0.0190 0.0010 0.0085 0.0164 0.0064 0.0056 0.0072 0.0000 0.0104 0.0026 0.0000 0.0043
30 × 2 × 6 0.0119 0.0061 0.0071 0.0083 0.0000 0.0065 0.0086 0.0037 0.0027 0.0065 0.0017 0.0038 0.0023 0.0000 0.0025 0.0019 0.0000 0.0030
30 × 4 × 2 0.0439 0.0163 0.0157 0.0340 0.0086 0.0137 0.0352 0.0226 0.0114 0.0255 0.0064 0.0152 0.0091 0.0000 0.0086 0.0031 0.0000 0.0058
30 × 4 × 4 0.0316 0.0144 0.0131 0.0277 0.0176 0.0106 0.0266 0.0100 0.0068 0.0250 0.0000 0.0131 0.0054 0.0000 0.0041 0.0014 0.0000 0.0022
30 × 4 × 6 0.0436 0.0094 0.0173 0.0316 0.0157 0.0105 0.0310 0.0103 0.0099 0.0322 0.0150 0.0074 0.0080 0.0000 0.0096 0.0075 0.0000 0.0087
Average 0.0235 0.0082 0.0099 0.0166 0.0035 0.0090 0.0172 0.0053 0.0074 0.0162 0.0039 0.0079 0.0049 0.0000 0.0057 0.0027 0.0000 0.0042

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

12

Table 5
Comparative results of six algorithms for all the instances grouped by P, F and S.

Groups of instances P F S

10 15 20 25 30 2 4 2 4 6

SFLA aRPD 0.0121 0.0272 0.0294 0.0229 0.0257 0.0156 0.0313 0.0267 0.0229 0.0209
bRPD 0.0034 0.0097 0.0110 0.0074 0.0094 0.0062 0.0101 0.0098 0.0095 0.0052
sRPD 0.0070 0.0115 0.0114 0.0093 0.0104 0.0064 0.0134 0.0108 0.0089 0.0100

QSFLA aRPD 0.0093 0.0165 0.0202 0.0162 0.0210 0.0110 0.0223 0.0182 0.0161 0.0156
bRPD 0.0004 0.0015 0.0051 0.0018 0.0087 0.0016 0.0054 0.0033 0.0043 0.0029
sRPD 0.0059 0.0101 0.0118 0.0091 0.0083 0.0065 0.0115 0.0102 0.0087 0.0082

ABC aRPD 0.0070 0.0170 0.0234 0.0172 0.0215 0.0145 0.0199 0.0166 0.0190 0.0161
bRPD 0.0018 0.0053 0.0059 0.0058 0.0079 0.0038 0.0069 0.0051 0.0059 0.0050
sRPD 0.0037 0.0079 0.0100 0.0082 0.0074 0.0063 0.0086 0.0082 0.0077 0.0064

QABC aRPD 0.0068 0.0156 0.0214 0.0177 0.0194 0.0137 0.0186 0.0167 0.0167 0.0152
bRPD 0.0018 0.0020 0.0075 0.0025 0.0056 0.0025 0.0052 0.0054 0.0037 0.0025
sRPD 0.0039 0.0076 0.0099 0.0096 0.0083 0.0073 0.0084 0.0083 0.0082 0.0071

MPMA aRPD 0.0020 0.0049 0.0055 0.0061 0.0060 0.0042 0.0056 0.0050 0.0052 0.0045
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sRPD 0.0023 0.0064 0.0068 0.0066 0.0066 0.0049 0.0066 0.0060 0.0060 0.0053

MPMA-QL aRPD 0.0012 0.0035 0.0036 0.0024 0.0030 0.0024 0.0031 0.0029 0.0025 0.0029
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sRPD 0.0021 0.0047 0.0054 0.0045 0.0045 0.0037 0.0047 0.0048 0.0037 0.0041

Fig. 7. Mean plots of different groups on the test instances regarding aRPD, bRPD, sRPD.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

13

4.4. Algorithm comparison and analysis for DAHFSP-FPM

Four state-of-the-art optimization algorithms were selected as com
petitors of MPMA and MPMA-QL, which are shuffled frog-leaping al
gorithm (SFLA) and SFLA with Q-learning (QSFLA) (Cai et al., 2022), as
well as artificial bee colony algorithm (ABC) and ABC with Q-learning
(QABC) (Wang, Lei, et al., 2022). Due to the variability of the research

questions, some adjustments to comparison algorithms were required.
Besides, key parameters of algorithm rivals were re-analyzed to adapt
the proposed DAHFSP-FPM. It is worth noting that the problem
parameter T has been determined in Section 4.3 to have a significant
advantage at 100, and therefore T is fixed to 100 in the following
parametric analysis.

SFLA and QSFLA were proposed for solving a DAHFSP without
considering machine deterioration and maintenance activities. For
dealing with the proposed DAHFSP-FPM, actual processing time under
linear deterioration effects instead of normal processing time as well as
flexible PM activities were considered in the decoding process of SFLA
and QSFLA. There are six key parameters in QSFLA, which covers all the
parameters in SFLA. For convenience, the following analysis is per
formed only for QSFLA parameters. Levels of each key parameter in
QSFLA were set as: the population size n in {30, 60, 90, 120, 150},
cluster number S in {2, 3, 5, 6, 10}, repeat times per search μ in {20, 30,
40, 50, 60}, learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ
in {0.6, 0.7, 0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}.
Orthogonal experiment settings under instance 20 × 2 × 6 and the
significant rank of parameter combinations are presented in Table A1
and Table A2 in the Appendix, and the factor level trend of parameters is
shown as Fig. A1. Hence, the parameter combination of QSFLA is sug
gested as: n = 60, S = 10, μ = 60, α = 0.4, γ = 0.6, ε = 0.4.

ABC and QABC were used to tackle a three-stage distributed parallel
machine scheduling with PM. To solve DAHFSP-FPM by ABC, the
encoding representation and decoding procedure of MPMA and search
strategies of SFLA were employed. As for QABC, the maximum tardiness
metric in the state is replaced with the makespan, and the action set is
replaced using the one in QSFLA. Regarding the levels of each key
parameter in QABC, the population size n in {20, 40, 60, 80, 100}, local
search times R in {35, 45, 55, 65, 75}, Limit in {n, 2n, 3n, 4n, 5n},
learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ in {0.6, 0.7,
0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. Orthogonal
experiment settings under instance 20 × 2 × 6 and the significant rank of
parameter combinations are given in Table A3 and Table A4, and the
factor level trend of parameters is shown as Fig. A2. Therefore, the
parameter combination of QABC is determined as: n = 100, R = 75,
Limit = n, α = 0.3, γ = 0.9, ε = 0.2.

To ensure fairness of algorithm competition, the same encoding and
decoding methods were used, and the maximum number of fitness
evaluations satisfying all algorithm convergence was selected as the

Fig. 8. Boxplot of six algorithms on makespan.

Fig. 9. Boxplot of six algorithms on CPU time.

Fig. 10. The optimal schedule found by MPMA-QL under the real-life case.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

14

same termination condition. Comparative results of six algorithms
regarding aRPD, bRPD and sRPD are given in Table 4, in which optimal
values are marked in bold.

First, it is clear that MPMA-QL outperforms SFLA and QSFLA in terms
of aRPD and sRPD under all the instances. In terms of bRPD, SFLA finds
the same optimal value as MPMA-QL under three instances, while
QSFLA is comparable to MPMA-QL in strength under 13 instances.
Second, by comparing MPMA-QL with ABC and QABC in terms of aRPD
and bRPD, it can be seen that MPMA-QL obtained better optimization
results under all the instances. ABC showed equivalent performance on
only one instance in terms of aRPD and on 7 instances in terms of bRPD.
Besides, QABC exhibited equivalent results on only one instance in terms
of aRPD and on 12 instances in terms of bRPD. In terms of sRPD, MPMA-
QL revealed its superiority over ABC on 28 out of 30 instances and over
QABC on 26 out of 30 instances. The next is the comparison between
MPMA and MPMA-QL. In terms of aRPD, MPMA is better than MPMA-
QL under one instance and is comparable to MPMA-QL in strength
under 2 instances. In terms of bRPD, both of them achieved the optimum
under all the instances. In terms of sRPD, MPMA-QL revealed its supe
riority over MPMA on 24 out of 30 instances, while MPMA achieved
better results on the remaining 6 instances as well as exhibited equiva
lent results on two other instances.

In general, the average aRPD values of all the instances obtained by
SFLA, QSFLA, ABC, QABC, MPMA, and MPMA-QL are 0.0235, 0.0166,
0.0172, 0.0162, 0.0049, and 0.0027 respectively; the corresponding
average bRPD values are 0.0082, 0.0035, 0.0053, 0.0039, 0.0000 and
0.0000 respectively; the corresponding average sRPD values are 0.0099,
0.0090, 0.0074, 0.0079, 0.0057, and 0.0042 respectively. Besides, all
the instances were grouped by P, F and S to analyze the experimental
results in further, as shown in Table 5, in which optimal values are
marked in bold. For more intuitive comparison, Fig. 7 shows mean plots
of four groups of P = 10, P = 15, F = 2, S = 2 in terms of aRPD, bRPD
and sRPD. Obviously, it can be concluded that MPMA-QL has an excel
lent performance over five other competing algorithms.

From the above statistics, some additional conclusions are given as
follows. On the one hand, Q-learning can assist the original meta
heuristic algorithm to find better solutions and improve the stability of
the algorithm under most scenarios. On the other hand, the performance
of the metaheuristic algorithm combined with Q-learning still depends
heavily on the performance of the metaheuristic algorithm. Therefore, it
is still crucial to design efficient metaheuristic algorithms in combina
tion with problem features.

4.5. Real-life example without PM

A real-world scenario from a furniture company given by Cai et al.
(2022) was introduced to test the performance of six algorithms on
DAHFSP without PM. This real-life example is described in detail as
follows. There are two factories that collaborate to manufacture four
different types of cabinets. Each cabinet is constructed from the
respective 20 components when they are processed and transferred to
the assembly machine. During the component production phase, there
are five stages including punching, bending, welding, power pressing
and drilling, and each stage consists of 2 to 3 parallel machines. All
relevant data are fully referenced to Cai et al. (2022).

When the deterioration factors ε1, ε2 and ε3 are set to 0 and T is set to
a large positive number, MPMA-QL can be directly used to solve
DAHFSP without PM. For the fair competition, the maximum number of
fitness evaluations was set to 2 × 105 for each algorithm. By conducting
ten groups of experiments separately for each algorithm, the boxplots of
six algorithms on makespan and CPU time under this scenario are ob
tained, as shown in Fig. 8 and Fig. 9 respectively.

Some conclusions can be summarized as follows: (1) Compared with
the other five algorithms, MPMA-QL found the optimal schedule with

the makespan of 1093 (see Fig. 10) with comparable CPU time spent. (2)
MPMA-QL also has a significant advantage in terms of the average level
and standard deviation of ten experiments. (3) The solution quality of
QSFLA, QABC, and MPMA-QL is basically better than the respective
versions without considering Q-learning. In terms of solution time,
metaheuristic algorithms combining the Q-learning process may even
take up less computational resources.

5. Conclusions

Distributed assembly hybrid flow shop scheduling is one of the
classic research problems in manufacturing scenarios such as furniture
manufacturing. However, related studies in distributed assembly sce
narios basically ignored the impact of machine deterioration and fail
ures in the manufacturing process on the three stages of production,
transportation, and assembly. In this study, a DAHFSP-FPM was inves
tigated and its mathematical model was established. To effectively deal
with the complex model, a state-of-the-art PM strategy was introduced
to substitute for position-based PM decisions in the model and an
MPMA-QL was developed to solve the simplified model. With the
parameter tuning of deterioration factors and maintenance thresholds,
MPMA-QL can easily solve DAHFSP without deterioration and PM.
Experimental results indicate that MPMA-QL is significantly better than
the other five algorithms in most scenarios.

Although the developed MPMA-QL shows a superior solving per
formance for DAHFSP and DAHFSP-FPM, there are still some limita
tions. In our future research, the following tasks will be considered in
further: (1) applying multi-population swarm intelligence optimization
approaches and advanced reinforcement learning techniques to other
scheduling problems such as distributed assembly flexible job shop
scheduling; (2) taking more realistic constraints such as worker alloca
tion, setup time and learning effects in distributed manufacturing sce
narios; (3) developing more effective multi-objective evolutionary
algorithms and dynamic optimization approaches.

CRediT authorship contribution statement

Yanhe Jia: Writing – original draft, Software, Validation. Qi Yan:
Methodology, Visualization, Writing – review & editing. Hongfeng
Wang: Conceptualization, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This work was supported in part by the National Key Research and
Development Program of China under Grant no. 2021YFF0901300, in
part by the National Natural Science Foundation of China under Grant
nos. 62173076, 72271048 and in part by the China Scholarship Council
under Grant no. 202206080076.

Appendix A

.

.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

15

Fig. A1. Factor level trend of QSFLA for each key parameter.

Fig. A2. Factor level trend of QABC for each key parameter.

Table A1
Orthogonal experiment settings of QSFLA.

Trial number Factor level RV

n S μ α γ ε

1 30 2 20 0.1 0.6 0.1 1209.58
2 30 3 40 0.4 1 0.2 1171.55
3 30 5 60 0.2 0.9 0.3 1166.56
4 30 6 30 0.5 0.8 0.4 1159.05
5 30 10 50 0.3 0.7 0.5 1151.13
6 60 2 60 0.4 0.8 0.5 1175.05
7 60 3 30 0.2 0.7 0.1 1189.46
8 60 5 50 0.5 0.6 0.2 1159.14
9 60 6 20 0.3 1 0.3 1180.94
10 60 10 40 0.1 0.9 0.4 1151.60
11 90 2 50 0.2 1 0.4 1198.43
12 90 3 20 0.5 0.9 0.5 1224.71
13 90 5 40 0.3 0.8 0.1 1165.09
14 90 6 60 0.1 0.7 0.2 1159.35
15 90 10 30 0.4 0.6 0.3 1155.59
16 120 2 40 0.5 0.7 0.3 1213.76
17 120 3 60 0.3 0.6 0.4 1170.05
18 120 5 30 0.1 1 0.5 1179.21
19 120 6 50 0.4 0.9 0.1 1162.87
20 120 10 20 0.2 0.8 0.2 1178.58
21 150 2 30 0.3 0.9 0.2 1222.79
22 150 3 50 0.1 0.8 0.3 1208.95
23 150 5 20 0.4 0.7 0.4 1203.40
24 150 6 40 0.2 0.6 0.5 1174.48
25 150 10 60 0.5 1 0.1 1160.58

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

16

References

Cai, J., Lei, D., Wang, J., & Wang, L. (2022). A novel shuffled frog-leaping algorithm with
reinforcement learning for distributed assembly hybrid flow shop scheduling.
International Journal of Production Research, 61, 1233–1251.

Du, Y., Li, J., Li, C., & Duan, P. (2022). A reinforcement learning approach for flexible job
shop scheduling problem with crane transportation and setup times. IEEE
Transactions on Neural Networks and Learning Systems, 1–15.

Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic
assembly scheduling problems: A review and classification of concurrent-type
scheduling models and solution procedures. European Journal of Operational
Research, 273, 401–417.

Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., & Wang, L. (2021). Distributed scheduling
problems in intelligent manufacturing systems. Tsinghua Science and Technology, 26,
625–645.

Guo, L., Zhuang, Z., Huang, Z., & Qin, W. (2020). Optimization of dynamic multi-
objective non-identical parallel machine scheduling with multi-stage reinforcement
learning. IEEE International Conference on Automation Science and Engineering,
1215–1219.

Komaki, G., Sheikh, S., & Malakooti, B. (2019). Flow shop scheduling problems with
assembly operations: A review and new trends. International Journal of Production
Research, 57, 2926–2955.

Lee, J.-H., & Kim, H.-J. (2022). Reinforcement learning for robotic flow shop scheduling
with processing time variations. International Journal of Production Research, 60,
2346–2368.

Lei, D., Su, B., & Li, M. (2021). Cooperated teaching-learning-based optimisation for
distributed two-stage assembly flow shop scheduling. International Journal of
Production Research, 59, 7232–7245.

Li, H., Gao, K., Duan, P., Li, J., & Zhang, L. (2022). An improved artificial bee colony
algorithm With Q-Learning for solving permutation flow-shop scheduling problems.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10.

Li, J.-Q., Song, M.-X., Wang, L., Duan, P.-Y., Han, Y.-Y., Sang, H.-Y., & Pan, Q.-K. (2019).
Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop
problem with deteriorating jobs. IEEE Transactions on Cybernetics, 50, 2425–2439.

Li, R., Gong, W., & Lu, C. (2022). A reinforcement learning based RMOEA/D for bi-
objective fuzzy flexible job shop scheduling. Expert Systems with Applications, 203,
Article 117380.

Li, Y.-Z., Pan, Q.-K., Ruiz, R., & Sang, H.-Y. (2022). A referenced iterated greedy
algorithm for the distributed assembly mixed no-idle permutation flowshop

Table A2
Response and rank of parameters for QSFLA.

Level n S μ α γ ε

1 1171.57 1203.92 1199.44 1181.74 1173.77 1177.52
2 1171.24 1192.94 1181.22 1181.50 1183.42 1178.28
3 1180.63 1174.68 1175.30 1178.00 1177.34 1185.16
4 1180.89 1167.34 1176.10 1173.69 1185.71 1176.50
5 1194.04 1159.49 1166.32 1183.45 1178.14 1180.92
Delta 22.80 44.43 33.12 9.76 11.94 8.65
Rank 3 1 2 5 4 6

Table A3
Orthogonal experiment settings of QABC.

Trial number Factor level RV

n R Limit α γ ε

1 20 35 n 0.1 0.6 0.1 1178.52
2 20 45 3n 0.4 1 0.2 1181.26
3 20 55 5n 0.2 0.9 0.3 1176.75
4 20 65 2n 0.5 0.8 0.4 1175.50
5 20 75 4n 0.3 0.7 0.5 1174.23
6 40 35 5n 0.4 0.8 0.5 1177.87
7 40 45 2n 0.2 0.7 0.1 1174.34
8 40 55 4n 0.5 0.6 0.2 1169.22
9 40 65 n 0.3 1 0.3 1168.66
10 40 75 3n 0.1 0.9 0.4 1166.42
11 60 35 4n 0.2 1 0.4 1176.32
12 60 45 n 0.5 0.9 0.5 1167.47
13 60 55 3n 0.3 0.8 0.1 1164.31
14 60 65 5n 0.1 0.7 0.2 1167.05
15 60 75 2n 0.4 0.6 0.3 1166.39
16 80 35 3n 0.5 0.7 0.3 1174.29
17 80 45 5n 0.3 0.6 0.4 1173.18
18 80 55 2n 0.1 1 0.5 1169.09
19 80 65 4n 0.4 0.9 0.1 1163.67
20 80 75 n 0.2 0.8 0.2 1160.04
21 100 35 2n 0.3 0.9 0.2 1168.01
22 100 45 4n 0.1 0.8 0.3 1171.06
23 100 55 n 0.4 0.7 0.4 1160.43
24 100 65 3n 0.2 0.6 0.5 1163.71
25 100 75 5n 0.5 1 0.1 1167.66

Table A4
Response and rank of parameters for QABC.

Level n R Limit α γ ε

1 1177.25 1175.00 1167.02 1170.43 1170.20 1169.70
2 1171.30 1173.46 1170.67 1170.23 1170.07 1169.11
3 1168.31 1167.96 1170.00 1169.68 1169.76 1171.43
4 1168.05 1167.72 1170.90 1169.92 1168.46 1170.37
5 1166.18 1166.95 1172.50 1170.83 1172.60 1170.47
Delta 11.08 8.05 5.48 1.15 4.14 2.32
Rank 1 2 3 6 4 5

Y. Jia et al.

http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060

Expert Systems With Applications 232 (2023) 120837

17

scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 239,
Article 108036.

Lohmer, J., & Lasch, R. (2021). Production planning and scheduling in multi-factory
production networks: A systematic literature review. International Journal of
Production Research, 59, 2028–2054.

Mao, J.-Y., Pan, Q.-K., Miao, Z.-H., & Gao, L. (2021). An effective multi-start iterated
greedy algorithm to minimize makespan for the distributed permutation flowshop
scheduling problem with preventive maintenance. Expert Systems with Applications,
169, Article 114495.

Neufeld, J. S., Schulz, S., & Buscher, U. (2022). A systematic review of multi-objective
hybrid flow shop scheduling. European Journal of Operational Research, 309, 1–23.

Ruiz Rodríguez, M. L., Kubler, S., de Giorgio, A., Cordy, M., Robert, J., & Le Traon, Y.
(2022). Multi-agent deep reinforcement learning based Predictive Maintenance on
parallel machines. Robotics and Computer-Integrated Manufacturing, 78, Article
102406.

Shao, W., Shao, Z., & Pi, D. (2020). Modeling and multi-neighborhood iterated greedy
algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based
Systems, 194, Article 105527.

Song, H.-B., Yang, Y.-H., Lin, J., & Ye, J.-X. (2023). An effective hyper heuristic-based
memetic algorithm for the distributed assembly permutation flow-shop scheduling
problem. Applied Soft Computing, 135, Article 110022.

Srai, J. S., Kumar, M., Graham, G., Phillips, W., Tooze, J., , … Ford, S., et al. (2016).
Distributed manufacturing: Scope, challenges and opportunities. International
Journal of Production Research, 54, 6917–6935.

Wang, H., Sarker, B. R., Li, J., & Li, J. (2021). Adaptive scheduling for assembly job shop
with uncertain assembly times based on dual Q-learning. International Journal of
Production Research, 59, 5867–5883.

Wang, H., Yan, Q., & Zhang, S. (2021). Integrated scheduling and flexible maintenance in
deteriorating multi-state single machine system using a reinforcement learning
approach. Advanced Engineering Informatics, 49, Article 101339.

Wang, J., Lei, D., & Cai, J. (2022). An adaptive artificial bee colony with reinforcement
learning for distributed three-stage assembly scheduling with maintenance. Applied
Soft Computing, 117, Article 108371.

Wang, X., Ren, T., Bai, D., Ezeh, C., Zhang, H., & Dong, Z. (2022). Minimizing the sum of
makespan on multi-agent single-machine scheduling with release dates. Swarm and
Evolutionary Computation, 69, Article 100996.

Yang, S., Wang, J., & Xu, Z. (2022). Real-time scheduling for distributed permutation
flowshops with dynamic job arrivals using deep reinforcement learning. Advanced
Engineering Informatics, 54, Article 101776.

Zhang, Z., & Tang, Q. (2021). Integrating flexible preventive maintenance activities into
two-stage assembly flow shop scheduling with multiple assembly machines.
Computers and Industrial Engineering, 159, Article 107493.

Zhang, Z.-Q., Hu, R., Qian, B., Jin, H.-P., Wang, L., & Yang, J.-B. (2022). A matrix cube-
based estimation of distribution algorithm for the energy-efficient distributed
assembly permutation flow-shop scheduling problem. Expert Systems with
Applications, 194, Article 116484.

Zhao, F., Di, S., Wang, L., Xu, T., Zhu, N., et al. (2022). A self-learning hyper-heuristic for
the distributed assembly blocking flow shop scheduling problem with total flowtime
criterion. Engineering Applications of Artificial Intelligence, 116, Article 105418.

Zhao, F., Xu, Z., Wang, L., Zhu, N., Xu, T., & Jonrinaldi. (2022). A population-based
iterated greedy algorithm for distributed assembly no-wait flow-shop scheduling
problem. IEEE Transactions on Industrial Informatics, 1–12.

Zhao, Z., Zhou, M., & Liu, S. (2021). Iterated greedy algorithms for flow-shop scheduling
problems: A tutorial. IEEE Transactions on Automation Science and Engineering, 19,
1941–1959.

Y. Jia et al.

http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0075
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0075
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145

	Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with ...
	1 Introduction
	2 Problem description and model formulation
	3 MPMA-QL for DAHFSP-FPM
	3.1 Encoding and decoding
	3.2 Population division and exploration search
	3.3 Knowledge-based exploitation search
	3.4 Q-learning process
	3.5 Overall description of MPMA-QL

	4 Computational experiments
	4.1 Test instance settings
	4.2 Performance metric
	4.3 Key parameter settings of MPMA-QL
	4.4 Algorithm comparison and analysis for DAHFSP-FPM
	4.5 Real-life example without PM

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A Acknowledgement
	References

